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Abstract

Background: Astrocytoma is a common pediatric brain tumor that poses a significant health burden. Recent advancements in artificial
intelligence (Al), particularly neural network algorithms, have been studied for their precision and efficiency in medical diagnostics
via effectively analyzing imaging data to identify patterns and anomalies.

Objective: To systematically review Al-based diagnostic tools with neural network algorithms’ methodologies, sensitivities, speci-
ficities, and potential clinical integration for pediatric astrocytoma, providing a consolidated perspective on their overall performance
and impact on clinical decision-making.

Methods: As per PRISMA 2020 guidelines, we conducted a comprehensive search in PubMed, Scopus, and ScienceDirect on Febru-
ary 5, 2024. The search strategy was guided by a PECO question focusing on pediatric astrocytoma diagnosis using Al algorithms
vs computed tomography or magnetic resonance imaging (MRI). Keywords were terms related to Al and neural network algorithms.
We included studies analyzing the diagnostic accuracy of Al-based methods in cases of pediatric astrocytoma (World Health Organi-
zation grades 1-3), with no restrictions on a publication year or country. We excluded papers written in languages other than English
or Bahasa Indonesia and nonhuman studies. Data was assessed using the Effective Public Health Practice Project tool.

Results: Of 454 articles screened, 6 met inclusion criteria. These studies varied in design, location, and sample size, ranging from
10 to 135 subjects. The Al methods showed high sensitivity and specificity, often surpassing traditional radiological techniques.
Notably, neural network algorithms using 3-dimensional MRI demonstrated improved accuracy compared with 2-dimensional MRI
(96% vs 77%). The Al models exhibited performance levels comparable to or exceeding that of expert radiologists, with metrics such
as tumor classification accuracy of 92% and high values of the area under the receiver operating characteristic curve.

Conclusions: Al with neural network algorithms shows significant promise in enhancing accuracy of pediatric astrocytoma diagnosis.
The studies reviewed indicate that these advanced methods can achieve superior sensitivity and specificity compared with convention-
al diagnostic techniques. Integrating Al into clinical practice could substantially improve diagnostic precision and patient outcomes.
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Pesrome

AKTYyaJIbHOCTb: ACTPOIIMTOMA NIPEACTABIIET CO00i pacIIpOCTpaHEHHBII BUJI OITyX0JIEH TOJIOBHOTO MO3ra y JIeTeH U SBJIAETCS CyIIe-
CTBEHHOI1 1poOniemoii 1yt 3npaBooxpanenusi. [TlocienHue 1ocTmxeHus B 001acTH UcKyccTBeHHOro unTesuiekra (MHW), B uactHoCTH,
QITOPUTMOB HEHPOHHBIX CETEH, M3y4aloTCsl Ha MpPEeJMET TOYHOCTH U 3()HEKTUBHOCTU B MEIULIMHCKON JHAarHOCTHKE IOCPEICTBOM
3¢ PeKTUBHOrO aHaIM3a JTAaHHBIX BU3YaJIN3aMOHHbIX HCCIIEJOBAHUI JJIs BBISABICHHS 3aKOHOMEPHOCTEH U aHOMAJIHH.

Heas: [IposecTn cuctemarnueckuii 0030p IHArHOCTUYECKUX MHCTPYMEHTOB Ha ocHoBe M ¢ MeTonoorue, 4yBCTBUTEIBHOCTHIO,
CHEUU(PUIHOCTBIO AITOPUTMOB HEHPOHHBIX CETEH, a TAKKE U3YYHTh BOIIPOC MOTCHIMAIBLHOTO BHEAPCHUS B KIMHUYECKYIO TPAKTUKY
JUIsl IMarHOCTHKU aCTPOLUTOMBI y JieTeil. Takum 00pa3om, MOKHO MOIYYHTh MPEACTaBICHHE 00 uX 00muiel 3(HeKTUBHOCTH U BIIUS-
HUM Ha IPUHATHE KIMHUYECKUX PEIICHUH.

MeTtoapi: CornacHo pexkomennarmsmM PRISMA 2020, 5 despans 2024 . 6pu1 mpoBeneH oOmmpHbIi nouck B PubMed, Scopus
u ScienceDirect. Ctparerus noucka ocHoBbiBasiack Ha Bonipoce PECO, nocsimennom cpasaenuto KT- u MPT-anarsoctukn actpo-
LIUTOMBI y JieTel ¢ nomolsto anropurmoB MH. KitoueBble ciioBa cocTaBisiiin TepMUHBL, OTHOCcAmuecs kK MY u anroputmMam HeHpoH-
HBIX ceTeid. B 0030p ObUIM BKIIIOYEHBI UCCIIEA0BAaHNS, aHAIM3UPOBABIINE TOYHOCTD JIMATHOCTUKH METO/10B Ha ocHoBe MU y nereit
¢ actporutomoii (1-3 crenenu no knaccudpukanuu BO3). OrpannyueHni o rofy uin crpane myonukanuu He Obuto. M3 0630pa Obutu
UCKJIFOUCHBI HUCCIIECA0BAHMS, OIYyOIMKOBAaHHBIC HA SI3bIKAX, OTIMYHBIX OT aHIJIMHCKOTO M MH/IOHE3UHICKOIo, a TaKKe MCCIICIOBAaHUS
6e3 yuacrus sironieid. KauecTBo qaHHBIX olieHMBaM ¢ nomolisio nHerpymenra Effective Public Health Practice Project.
Pesyanbrarsl: 113 454 0ToOpaHHBIX cTaTEell KPUTEPUSM BKIFOYCHHUS COOTBETCTBOBANM 6. JlaHHBIC HCCIIEIOBAHUS PA3IHYAIINCH 110 JIH-
3aiiHy, MECTy IpoBeneHus U pa3mepy Beioopku (ot 10 mo 135 uenosek). J{uarnoctuyeckas 3¢pdexkruBHocts MeTonoB MU nmokazana
BBICOKYIO 4yBCTBUTEJIBHOCTb U CHELU(PHYHOCTD, YACTO MTPEBOCXOJUBIIYIO TPAAULMOHHbBIE PEHTIEHOJIOTHYecKe MeToibl. [Tpume-
YaTesIbHO, YTO AJITOPUTMBI HEHPOHHBIX ceTell ¢ ucnonb3oBanueM 3D-MPT nponemMoncTpupoBanu 0ojee BICOKYIO TOUHOCTH (96%)
o cpaBueHuio ¢ 2D-MPT (77 %). Monenn U nokaszanu ypoBeHb 3 )EKTHBHOCTH, COIIOCTABUMBIH C AKCIEPTaMU-PEHTI €HOJIO-
raMu WM MPEBOCXOSILIUI X YPOBEHbB, IPUYEM TOUYHOCTH KiIacCu(pUKaLUK ommyxoseil cocraBuna 92%, a snadenuss AUROC Gbutn
BBICOKHMH.

3axuouenne: VI ¢ anropurMamu HEHPOHHBIX CETEH JEMOHCTPUPYET 3HAYUTEIIbHbIE NEPCIIEKTHBbI B MOBBIIICHUH TOYHOCTH JIUa-
THOCTHKH aCTPOLIUTOMBI y sieTell. MceinenoBaHus MOKa3bIBatOT, YTO JIAaHHBIE TIEPEI0BbIE METO/IbI MOTYT 00eceunTh 00s1ee BHICOKYIO
YyBCTBUTEIBHOCTh M CHEHU(PUIHOCTD 10 CPABHEHHIO C TPaIUIIMOHHBIMU. BHenpenne U B KIIMHUYECKYIO MPAKTUKY MOXKET CyIIe-
CTBEHHO MOBBICUTH TOYHOCTh TMATHOCTUKH U YIAYYLIUTh PE3yJIbTaThl JCUCHHS ITal[ICHTOB.

Knioueswie crosa: NCKyCCTBEHHbBIH HHTEIUICKT, aCTPOLIUTOMA, IMarHOCTHKA, HEMPOHHBIE CETH, TIeANATPUs
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Introduction

Astrocytoma is one of the most common types of
pediatric brain tumor with a significant burden. It arises
from star-shaped glial cells known as astrocytes or as-
troglia and can develop anywhere in the brain and spinal
cord."? Among different brain and central nervous system
tumors, pediatric astrocytomas account for 40% to 50%,
making them one of the most diagnosed solid tumors in
children.? Children can develop astrocytoma at any age,
with boys and girls equally affected as well as minimal
racial differences have been found.* Most reported cases
of pediatric astrocytoma are low-grade and account for
more than 85% of all reported cases. In contrast, high-
grade cases account for 12% to 15% of all reported cases.
Although the 5-year survival rate for low-grade pediatric
astrocytoma is favorable, ranging between 80% and 97%,
the median survival for high-grade pediatric astrocytoma
is devastatingly low, with a survival rate of less than 20%.°

In recent years, artificial intelligence (Al) has brought
promising advancements in medical diagnostics.® Spe-
cifically, Al applications have shown significant poten-
tial in increasing diagnostic precision and efficiency
and improving patient outcomes.”'> Automated image
analysis and machine learning techniques support clini-
cal decision-making by reducing the variability caused
by human visual perception.’* Convolutional neural net-
works (CNN) have emerged among these Al technolo-
gies as effective tools for diagnosing complex medical
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conditions.'*'® Inspired by the human visual cortex’s
structure and operation, CNNs are designed expressly
to handle and analyze both structured and unstructured
data with a grid-like architecture, such as sequences and
images. These networks consist of convolutional, pool-
ing, and fully-connected layers, making them especially
powerful in medical imaging.'”"

Previous research on Al neural network algorithms
in diagnosing pediatric astrocytoma has yielded varied
results. Arle et al (1997) provided early insights into di-
agnostic accuracy of neural networks, showing promising
but limited results.® Subsequently, Bidiwala et al (2004)
expanded on this by comparing different imaging modali-
ties and their integration with neural networks, revealing
variability in sensitivity and specificity.?! Fetit et al (2015)
demonstrated a significant improvement in diagnostic ac-
curacy using 3-dimensional (3D) magnetic resonance im-
aging (MRI) analysis compared with 2-dimensional (2D)
methods.” Grist et al (2020) assessed the performance
of neural networks with MRI parametric analysis, high-
lighting mixed outcomes across different features.?

Our systematic review aims to comprehensively eval-
uate the role of Al-based applications as diagnostic tools
in pediatric astrocytoma cases. This review delves into the
methodologies employed by various Al-based diagnostic
tools, their reported sensitivities and specificities, and
their potential integration into existing clinical workflows.
This study contributes valuable insights to the evolving
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discourse on Al applications in pediatric neuro-oncology,
with the ultimate goal of informing future research direc-
tions and influencing clinical practices for the benefit of
young patients facing challenges of astrocytoma.

Methods

This systematic review was performed based on the
PRISMA 2020 guideline.* The search was conducted on
February 5, 2024, in international databases, including
PubMed and Scopus. The study protocol has been reg-
istered on the International Prospective Register for Sys-
tematic Review (Registry No. CRD42024508890).

Search Strategy

We formulated a PECO question as follows: popula-
tion (pediatric patients with astrocytoma); exposure (di-
agnosing via Al application using neural network algo-
rithms); comparison (computed tomography [CT] or MRI
scans); outcome (diagnostic accuracy, specificity, and
sensitivity). The keywords used were related to Al and al-
gorithms (Table 1). Including all Al-related algorithms in
the keyword search ensures that the study captures papers
that may focus on neural networks in the full text, even if
they do not explicitly mention them in the title or abstract.
This approach is also crucial in the rapidly evolving field
of Al, where new terms and hybrid methods frequently
emerge. Subsequently, we conducted a systematic search
to collect relevant research, followed by a manual search
of the references cited in the included studies to prevent
pertinent missing publications.

Eligibility Criteria

The inclusion criteria were all studies analyzing speci-
ficity and sensitivity of Al-based applications using neural
network algorithms for diagnosing pediatric astrocytoma
(World Health Organization grades 1-3) were included in
the study. No restrictions were placed on a year and coun-
try of publication. Studies written in languages other than
English or Bahasa Indonesia were excluded, and their full
texts were not retrieved. Nonhuman studies were also ex-
cluded.

Selection Process

Four reviewers (DWAN, TAP, RF, and HHA) indepen-
dently screened titles and abstracts to identify possibly
relevant studies during selection. Then, full-text papers
were found and evaluated for eligibility using the inclu-
sion and exclusion criteria. Any disagreements among the
reviewers were handled through mutual discussion and
then with the consensus of the fifth reviewer (FKF).

Quality Assessment

The Effective Public Health Practice Project (EPHPP)
was utilized to evaluate the studies’ quality.”> We used
6 criteria: selection bias, study design, confounders, blind-
ing, data collection techniques, and withdrawals or drop-
outs. There were 2 questions for each criterion—a total
of 14—apart from the “study design” component, which
contained 4 questions (in case of a randomized clinical
trial). The rate (weak, moderate, and strong) represented
the outcome of each criterion. The study’s global rating
(weak, moderate, and strong) was then determined by
considering the rates of all the 6 criteria. Four reviewers
(DWAN, TAP, RF, and HHA) blindly and independently
assessed the quality of the studies. Any discrepancies
across all the reviews were resolved by discussion with
the fifth reviewer (FKF).

Data Analysis

The data analysis in this systematic review involved
narrative synthesis of the findings from the included
studies. The data extracted included the author, year of
publication, study location, study design, sample size, di-
agnostic method used, and comparative aspects of these
methods. Specifically, we summarized the diagnostic
accuracy outcomes reported in each study, encompass-
ing sensitivity, specificity, positive predictive (PPV) and
negative predictive values (NPV).

Results

Study Selection

In the initial search using keywords across the 3 da-
tabases, a total of 454 articles were identified: PubMed

Table 1

The keywords used for the search strategy

Taonuuya 1

KioueBble ci10Ba, HCMOJIb30BAHHBIE B CTPATErHH MOMCKA

Databases

Keywords

PubMed and Scopus

(“artificial intelligence” OR “computational intelligence” OR “computer reasoning” OR “computer
vision systems” OR “knowledge acquisition” OR “knowledge representation” OR “machine
intelligence” OR “machine learning” OR “computer heuristics” OR “expert systems”

OR “deep learning” OR “natural language processing” OR “computational neural networks”
OR “robotics”) AND (“astrocytoma” OR “astroglioma” OR “oligoastrocytoma” OR “pleomorphic
xanthoastrocytomas” OR “astrocytic glioma” OR “subependymal glioma” OR “mixed
oligodendroglioma-astrocytoma” OR “oligodendroglioma”) AND (pediatric* OR pediatric*
OR child* OR infant OR newborn OR congenital)

ScienceDirect

(“artificial intelligence” OR “machine learning” OR “computational neural networks”)
AND (“astrocytoma”) AND (“paediatric” OR “pediatric’)
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(88 articles), Scopus (119 articles), and ScienceDirect
(247 articles). Following the identification and screen-
ing steps for duplicates, 49 duplicated articles were
removed, leaving 405 articles. A subsequent screen-
ing based on titles and abstracts led to the exclusion of
380 articles, resulting in 25 remaining articles. Full-text
reading and assessment based on the eligibility criteria
were then conducted, leading to the exclusion of 19 ar-
ticles: 12 articles were not specific to pediatric cases;
5 did not use neural network algorithms, and 2 were not
diagnostic studies. Finally, 6 articles were included in
our study. The PRISMA flow diagram of study selection
is presented in Figure 1.

Study Characteristics

The included studies exhibited a range of designs,
study locations, sample sizes, and diagnostic methods for
evaluating Al neural network algorithms in diagnosing
pediatric astrocytoma (Table 2). These studies employed
cross-sectional and prospective cohort designs and were
conducted in the USA and UK, with sample sizes rang-
ing from 10 to 135 subjects. Diagnostic approaches var-
ied, including comparisons of Al with neural network
algorithms against traditional methods such as neurora-
diologic assessments, CT and MRI scans. The outcomes
assessed included several metrics: specificity, sensitiv-
ity, PPV, NPV, and overall accuracy. The 6 studies were
assessed using the EPHPP tool, with most being rated
overall weak due to methodological issues, particularly
in the study design (D2), confounder control (D3), blind-
ing (D4), as well as withdrawals and dropouts (D6). Only

Identification

Screening

Included

Identification of studies via databases and registers j

Records identified from:
(n=454)
PubMed (n=88)
Scopus (n=119)
ScienceDirect (n=247)

Records removed
before screening:

\4

Records screened (n=405)

\ 4

Duplicate records
removed (n=49)

Records excluded

\

Reports sought for retrieval
(n=25)

Y

(n=380)

Reports not

\4

Reports assessed
for eligibility (n=25)

Y

retrieved (n=0)

\ 4

Studies included in review
(n=6)

Reports excluded:
Not specific for
pediatric cases (n=12)
Not using neural
network algorithms
(n=5)

Not a diagnostic
study (n=2)

Figure 1. PRISMA flow diagram of study selection
Pucynox 1. Brok-cxema PRISMA

Table 2
Characteristics of all included studies
Taonuya 2
XapakTepucTHKa BCeX BKJIIOYEHHBIX HCCIeT0BAHUT
No Author Count Study Total Index test Reference standard/ Outcomes
: (year) ry design subjects comparison assessed
. Specificity.
Arle et al?® Cross- Al with a neural . . S
1 (1997) USA sectional 10 network algorithm Neuroradiologist sensitivity,
PPV, NPV
o . Sensitivity.
Bidiwala Cross- Al with a neural . . e
2 et al’! (2004) USA sectional 14-33 network algorithm CT/MRI+Neuroradiologist spe}c)gi\cl:lty,
. . Al with a neural Accuracy.
22 >
3 f;(;llt Se)t al UK Pr(és()%e()c;tlve 20 network algorithm MRI sensitivity,
(2D vs 3D) specificity
Grist et al* Prospective Al with a neural
4 (2020) UK cohort 22 network algorithm MRI Accuracy
5 gggﬁgllldou- UK Cross- 14 Probabilistic neural MRI Sensitivity,
et al”’ (2014) sectional networks specificity
Quon et al*® Prospective Al with a neural . .
6 (2020) USA cohort 135 network algorithm MRI+ Neuroradiologist Accuracy

Note: 2D/3D, 2-/3-dimensional; Al artificial intelligence; CT, computed tomography; MRI, magnetic resonance imaging; NPV,

negative predictive value; PPV, positive predictive value

Ipum.: 2D/3D — nByx-/TpexmepHsblii; Al — uckyccrBennsiii untemiekt; CT — xommbrorepHas tomorpadus; MRI — maruurt-
HO-pe3oHaHcHast Tomorpadus; NPV — orpunarenbaas nporaoctudeckasi ieHHOCTh; PPV — mosoxkurensHast MporHocTryeckast

IICHHOCTb
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Orphanidou-Vlachou et al., 2014 -

Quon et al., 2020

Arle etal., 1997 - ® ©o -
Bidiwala et al., 2004 - ® & o
Fetit et al., 2015 - - ® o
Grist et al., 2020 - - ® -
®

Figure 2. Results of quality assessment
Pucynok 2. Pezynemamul oyenku kauecmea

1 study (Quon et al,*® 2020) achieved a strong overall
score rating. The entire results of the quality assessment
are visualized in Figure 2.

Discussion

The accurate and early diagnosis of astrocytoma
in pediatric patients is crucial for effective treatment
and improved outcomes. The advent of Al and neural
network algorithms presents a promising avenue for
enhancing diagnostic accuracy. Among the studies re-
viewed, Fetit et al (2015) demonstrated the highest di-
agnostic accuracy with 3D MRI analysis using neural
networks, achieving 96% accuracy compared with 77%
for 2D analysis.?? This highlights the critical role of ad-
vanced imaging techniques in maximizing Al perfor-
mance. Quon et al (2020) reported tumor classification
accuracy of 92%, an F1 score of 0.80, and area under the
receiver operating characteristic curve exceeding 0.99,
indicating that their neural network model performed
comparably to, or better than, some radiologists.?

Similarly, Orphanidou-Vlachou et al (2014) showed
that probabilistic neural network analysis on T1- and
T2-weighted images achieved high sensitivity (90.5%-
95.2%) and specificity (96.2%-98.7%), significantly out-
performing conventional radiology.”’ In contrast, Bidiwa-
la et al (2004) found that combining CT and MRI yielded
a specificity of 94.1% and a sensitivity of 66.7%, demon-
strating the benefits of integrating multiple imaging mo-
dalities.”' Grist et al (2020) reported maximum diagnostic
accuracy of 75% with univariate features, underscoring
the need for optimal feature selection.? Arle et al (1997)
achieved a sensitivity of 70% and a specificity of 75%,
marking an early but less advanced stage of neural net-
work performance.?® Overall, Al and neural network algo-
rithms show substantial promise in improving diagnostic
tools for pediatric astrocytoma, offering more accurate
and reliable diagnoses as these technologies evolve.

Comparing our results with those from other Al ap-
proaches, we observed notable differences in diagnostic

performance. In our study the highest accuracy, achieved
with 3D MRI neural network analysis at 96%, surpasses
Gutierrez et al’s accuracy of 0.914 with support vector
machines (SVM),® indicating superior performance with
advanced imaging techniques. Additionally, it exceeds
Li et al’s accuracy of 0.8775 and area under the curve
of 0.8646 using SVMs,” as well as Zarinabad et al’s
combined SVM, random forest, and linear discriminant
analysis accuracy of 0.86.%° Furthermore, it outperformed
Zhou et al’s general linear model, which, despite high
area under the curve of 0.92, had a lower accuracy of
0.74.3! However, several other diagnostic studies did not
show significant differences; some demonstrated lower
performance.

Al, particularly deep learning (DL) techniques, espe-
cially using neural network algorithms, has revolutionized
medical imaging diagnostics by automating feature ex-
traction and improving accuracy. It shows superior results
compared with other algorithms. Traditional machine
learning (ML) methods often require manual feature ex-
traction and extensive tuning.*? Subsequently, DL models
may also possibly handle large datasets efficiently. Trans-
fer learning further enhances DL by enabling fine-tuning
of pretrained models for specific tasks, reducing the need
for extensive labeled datasets.*** In addition, DL algo-
rithms can automatically extract relevant features from
MRI scans, correct artifacts, and facilitate precise tumor
localization and segmentation.**** Finally, unlike ML al-
gorithms, which are more labor-intensive and prone to hu-
man error, DL provides superior accuracy and efficiency
in complex tasks, such as brain tumor segmentation and
classification.’>

Integrating Al and neural network algorithms into
clinical practice could revolutionize diagnostic work-
flows and protocols. By providing more accurate and reli-
able diagnoses, these technologies have the potential to
significantly improve patient outcomes through early de-
tection and intervention. Clinicians and radiologists could
leverage Al tools to complement their expertise, leading
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to more informed decision-making. However, successful
implementation would require comprehensive training for
health care professionals to use these advanced systems
effectively. Subsequently, deploying Al systems in clini-
cal settings comes with several challenges. Technical and
infrastructural requirements, such as advanced computing
capabilities and secure data management systems, are es-
sential for the effective use of Al. Regulatory and ethical
considerations also play a crucial role, as Al in health care
must adhere to strict standards to ensure patient safety and
privacy. Furthermore, continuous validation and updates
of Al algorithms are necessary to maintain their accuracy
and relevance in a rapidly evolving medical landscape.

Study Limitations and Future Recommendations

Despite the promising results, the current body of re-
search has notable limitations. The studies included in this
review varied widely in design and sample sizes, which
may affect generalizability of the findings. Additionally,
geographic representation was primarily limited to the
USA and UK, suggesting the need for broader, more in-
clusive studies. There was also a lack of uniformity in di-
agnostic tools and methods across the studies, complicat-
ing direct comparisons.

Future research should focus on larger, more diverse
cohort studies to validate the findings of this review.
There is a need to explore the application of Al algorithms
in various clinical settings and among different popula-
tions to ensure broad applicability. Developing stan-
dardized protocols for Al-based diagnostic tools would
facilitate more consistent and reliable implementation.
Long-term studies assessing the impact of Al on patient
outcomes and health care costs are essential to fully un-
derstand these technologies’ benefits and potential draw-
backs. Moreover, the practicality of implementing such
advanced Al technologies remains inconclusive in devel-
oping countries like Indonesia, where resource limitations
may impact the feasibility and effectiveness of these in-
novations.

Conclusions

This systematic review highlights the promising po-
tential of Al and neural network algorithms in diagnosing
pediatric astrocytoma. The studies consistently show that
Al-based methods can achieve high diagnostic accuracy,
often surpassing traditional radiological techniques. Spe-
cifically, 3D MRI analysis and probabilistic neural net-
works analysis demonstrated significant improvements in
sensitivity and specificity. Furthermore, neural network
algorithms provided reliable tumor classification, with
performance comparable to or exceeding that of expert
radiologists in certain instances. These findings suggest
that integrating Al and neural networks into clinical prac-
tice could enhance precision and reliability of pediatric
astrocytoma diagnosis, ultimately improving patient
outcomes. However, further research with larger, more
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diverse cohorts is needed to confirm these results and fa-
cilitate broader clinical application.
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