VIHHOBaLOHHas MeamnUmHa KybaHu. 2024;9(2):108-114 / Innovative Medicine of Kuban. 2024;9(2):108-114

https://doi.org/10.35401/2541-9897-2024-9-2-108-114 ,.) Check for updates

Circadian Rhythms of the Liver and Their Sexual Dimorphism:
Current State of the Problem

©David A. Areshidze’, Lev V. Kakturskiy

Avtsyn Research Institute of Human Morphology of Petrovsky National Research Center of Surgery Research Institute, Moscow,
Russian Federation

* David A. Areshidze, Avtsyn Research Institute of Human Morphology of Petrovsky National Research Center of Surgery
Research Institute, ulitsa Tsyurupy 3, Moscow, 117418, Russian Federation, labcelpat@mail.ru

Received: January 15, 2024. Received in revised form: February 27, 2024. Accepted: March 25, 2024.

Abstract

The rhythmicity of life functioning processes at the cellular, organ, and system levels is one of the fundamental properties of living
things. Among the wide range of biorhythms, circadian rhythms are the most important for mammals. In mammals, circadian rhythms
coordinate a wide range of physiological processes with constantly changing environmental conditions, primarily with light conditions.
Data on the characteristics of the circadian rhythms of the liver (the most important organ for maintaining homeostasis) are limited
and sometimes even contradictory. We aim to analyze modern literature investigating the organization of circadian rhythms at the
gene, cellular, and organ levels. Over the past decades, it has become known that disruption of the normal circadian rhythm of the liver
underlies the development of several pathologies.

This article highlights some aspects of the normal circadian rhythm functioning and the role of circadian dysfunction in the occurrence
of specific pathologies. We also focus on the little-explored issue of sex differences in the circadian rhythms of the mammalian liver.
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Peszrome

PuTMu4HOCTH NponeccoB (DyHKIMOHUPOBAHUS )KU3HEACATEIBHOCTH Ha KJIETOYHOM, OPTaHHOM M CUCTEMHOM YPOBHSX SIBIISICTCS OJ1-
HUM U3 QYHIAMEHTAJBHBIX CBOWCTB )HUBOTO. Cpe/ii IMPOKOTO CIIeKTpa OHOPUTMOB HanOOJIee BaXKHBIMH ISl MIICKOTIUTAIOIINX SIB-
JISIFOTCS IUPKaIMaHHbIC (LIMPKaIHbIC) PUTMBI. Y MJICKOIMHUTAIOIIMX [IMPKAHBIC PUTMbI COTNIACOBBIBAIOT IIPOTEKAHHUE HIMPOKOTO CIIEKT-
pa GpHU3MOIOTMUECKUX MPOLECCOB C MOCTOSHHO MEHSIOIIMMUCS YCIOBUSMHU OKPYKAIOIIEH CPeibl, B IEPBYIO O4EPE/ib, CO CBETOBBIM
PEKUMOM.

JlanHble 00 0COOCHHOCTAX LMPKAJHBIX PUTMOB IE€UCHU — Ba)KHEHILEro OpraHa IoJJiepKaHus T'OMEeOCTa3a — OrpaHWYEHbI, a HHO-
I71a ¥ BOBCE MPOTHBOPEUHBHL. LIeIbr0 HACTOSIIECH CTAThU SBISETCS aHAJIN3 COBPEMEHHBIX HAyYHBIX PAa0OT, TOCBSIIICHHBIX BOIPOCAM
OpraHM3aly CyTOYHBIX PUTMOB Ha T€HHOM, KJIIETOYHOM M OPraHHOM YPOBHSX. AKTYaJIbHOCTh JJAHHOTO 0030pa 0OyCIIOBJIEHA TEM,
YTO 32 MOCJIEJHNE JICCATHIICTUS] HAKOIUICH 3HAYUTENbHBI 00beM 3HaHUH O TOM, YTO HapylIEHHE HOPMAJIbHOMW LIUPKaIHON pUTMUY-
HOCTH NIEYEHH JICXKUT B OCHOBE Pa3BUTHS PAAA TSIKENBIX MATOJOTHHA.

B crarbe ocBeleHbl HEKOTOPBIE aCIIEKThl HOPMAJIbHON IUPKaJHON PUTMUYHOCTH (DYHKIIMOHUPOBAHHS IIEUCHN U POJIM HAPYIICHUS
LUPKAIHBIX PUTMOB B BOBHMKHOBEHHH HEKOTOPBIX narosioruid. Ocoboe BHUMaHKE yACICHO MAJIOU3yYeHHOMY BOIIPOCY TOJIOBBIX pa3-
JIMYUHA B CYTOYHON PUTMUYHOCTH (DYHKIIMOHUPOBAHHS TIEYCHH MIICKOTTUTAIOIINX.
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Introduction

Homeostasis, organ and system functioning, metabo-
lism, and information processing are all controlled by
the biological-structural-temporal discreteness.!? Current
research indicates that over 500 distinct functions and
processes in the mammalian body are regulated by circa-
dian rthythms (CRs).** These rhythms differ in amplitude
and phase, yet are precisely synchronized with one an-
other as well as with environmental factors, ensuring that
body systems function at optimal levels.’

The genetic determinants of the mammalian CR complex
are well established. However, CRs can also be influenced
by both internal and external environmental factors,® en-
suring the body’s ability to adapt to changing conditions.
For all living organisms, including humans, the regulation
of various physiological rhythms is primarily dependent
on the daily light-dark cycle.” In cases of adequate adapta-
tion, environmental factors do not significantly impact CRs.
However, when adaptation fails, changes in the phase-am-
plitude characteristics of rhythms can occur, leading to de-
synchronosis and potentially causing various diseases.®

Methods

We thoroughly reviewed articles published in journals
recommended by the Higher Attestation Commission un-
der the Ministry of Science and Higher Education of the
Russian Federation and publications in PubMed, Scopus,
and Web of Science. The studies were assessed for their
relevance to our issue of interest and objective in 3 stages:
we evaluated titles, abstracts, and full texts. Our team of
2 independent researchers searched publications in data-
bases, including eLibrary, as well as in Google Scholar
and ResearchGate.

Discussion

Little is known about gender disparities in the mam-
malian circadian rhythmicity, which may be attributed
to the predominant use of male experimental animals in
studies of mammalian CRs.” Among the organs that con-
tribute significantly to maintaining homeostasis in mam-
mals, the liver plays a central role. Sexual dimorphism in
its structure and functions is well documented, although
available data are scant and inconsistent. '

Within hepatocytes, as well as other cells, the bio-
logical clock at the molecular-genetic level is a complex
system. The basic helix-loop-helix ARNT like 1 gene,
BMALI, operates in conjunction with the clock circadi-
an regulator gene, CLOCK, along with the Period (PER)
and Cryptochrome (CRY) gene families, among other
genes." The system is further reinforced by a second neg-
ative feedback loop, which is accomplished through the
interaction of the REV-ERBa and RORa proteins with the
ROR response element (RORE).!? This additional feed-
back loop enhances the system’s reliability, thereby pro-
moting optimal biological function.

In the absence of external zeitgebers, hepatocytes re-
tain the endogenous CR of expression of clock genes,
the P450 gene, as well as genes affecting lipid metabo-
lism, whereas in complete darkness, the CRs of glucose
and lipids disappear, although several other CRs are main-
tained.'® Light affects the period and amplitude of the CRs,
expression of some genes, and coordination of rhythms.!'*

Extensive research has been conducted concern-
ing the CRs of various processes, such as DNA repair,
ribosome biosynthesis, autophagy, and those processes
occurring in hepatocytes under endoplasmic reticulum
stress.'” The circadian phases of numerous messenger
RNAs in hepatocytes align with the phases of the pro-
teins they encode and their respective biochemical path-
ways.'® Interestingly, certain enzymes have also been ob-
served to exhibit circadian rhythmicity through the per-
sistence of their transcripts, suggesting their involvement
in regulating the CR of the liver and posttranscriptional
mechanisms."”

Most liver functions have a CR.'®! The expression
of genes ensuring liver functioning can be regulated
directly by the autonomous circadian system of hepa-
tocytes, rhythmic external signals, or a combination
of both.?* At the same time, the liver functioning has
been proven to be highly dependent on the typically syn-
chronized control of its CR by the suprachiasmatic nu-
clei (SCN) of the hypothalamus and the pineal gland.”!

The liver maintains blood glucose levels circadian
regulation system of which functions by synchronizing
the tissue-specific mechanisms of this carbohydrate me-
tabolism. The SCN controls the feeding/fasting rhythm,
while peripheral pacemakers initiate temporally coordi-
nated gene expression programs to maintain physiologi-
cal blood glucose levels.??

Studies on the expression of circadian genes in mam-
mals revealed the presence of 2 transcription peaks in he-
patocytes, corresponding to the transitions between the
states of activity and rest. These genes, at multiple lev-
els, regulate glucose metabolism in hepatocytes by con-
trolling the glucokinase expression.”® Current research
suggests that hepatocyte clock genes play a crucial role
in fine-tuning fluctuations in blood glucose levels accord-
ing to the activity rthythms determined by the SCN. Dis-
ruption of the BMALI gene in mouse hepatocytes desyn-
chronizes the CR of glucose,* whereas turning off clock
genes does not affect the CR of this carbohydrate.?

Clock genes in the liver play an essential role in regu-
lating glucose metabolism and perform other vital func-
tions. Cryptochromes regulate gluconeogenesis by inter-
acting with G protein-coupled receptors. This interaction
blocks cyclic adenosine monophosphate accumulation
and activates the transcription of genes involved in glu-
coneogenesis. CRYI overexpression has been found
to reduce blood glucose levels and increase the sensi-
tivity of liver cells to insulin in mice with experimental
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diabetes.?® Cryptochromes also suppress the transcription
of genes that encode glucocorticoid receptors and phos-
phoenolpyruvate carboxykinase, an enzyme that regulates
gluconeogenesis.”” The KLF and KLF15 transcription
factor gene families are believed to regulate the rhythmic
expression of several enzymes that play a role in nitrogen
and amino acid homeostasis. Glucocorticoids influence
glucose metabolism by inducing PER2 expression during
hyperglycemia.*®

The liver plays a crucial role in regulating lipid me-
tabolism by controlling lipoprotein synthesis, lipid up-
take and conversion, and de novo fatty acid synthesis and
oxidation. Clock genes present in liver cells are signifi-
cant regulators of lipid metabolism and daily fluctuations
in the levels of free fatty acids, cholesterol, triglycerides,
and phospholipids.” Notably, lipids have been identi-
fied as potential regulators of the circadian rhythmicity
of the liver.*® The CLOCK gene, along with the timing
of food intake, serves as the primary external pacemaker
that regulates CRs.?! Disrupted functioning of this gene
has been found to alter the expression of genes that de-
termine lipid metabolism and lead to the accumulation of
intermediate products in the liver. Dyslipidemia has been
observed in PER2 knockout mice.*> Additionally, circa-
dian rhythmicity has been characterized by enzymes and
transcription factors that are involved in lipid metabolism
and production of bile acids.*

The primary regulators of all detoxification processes
in the liver are proteins specific to this organ, rhythmically
activated due to the work of CLOCK and BMAL1.*° The
circadian rhythmicity of the activity of cytolytic enzymes
has been described, although the data are scarce and con-
tradictory.*

Disruption of the normal CR of liver functioning
is considered one of the leading factors in the develop-
ment of nonalcoholic fatty liver disease (NAFLD), non-
alcoholic steatohepatitis (NASH), and metabolic syn-
drome.*”** Liver clock genes regulate the rhythm of sev-
eral processes involved in the pathogenesis of NAFLD,
such as autophagy, endoplasmic reticulum stress, and oxi-
dative stress, transforming NAFLD into NASH.** A num-
ber of authors indicate internal desynchronosis as one
of the reasons for NASH development.*!

Disruption of the normal functioning of clock genes
in hepatocytes is associated with a number of liver dys-
functions and diseases. Thus, in mice with carbon tet-
rachloride-induced liver fibrosis, abnormal rhythms
of CRY2 expression were found, and in animals with
PER?2 knockout under the same conditions, more pro-
nounced changes in the organ were observed compared
with controls.*> Mice with double knockout of PERI and
PER?2 are observed to have increased levels of bile acids
in the blood serum and the liver and cholestasis.* Disrup-
tion of the normal functioning of the PER family genes in
hepatocytes during hepatitis has been described.*
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Research findings suggest a link between liver CR
disorders and cancer incidence. The circadian clock
regulates several genes, including cell cycle genes, cell
proliferation genes, oncogenes, and tumor suppressor
genes.*” Disturbances in the normal functioning of clock
genes are quite common in liver tumors. One such ex-
ample is the reduced expression of BMALI, which can
negatively impact the normal cell cycle progression
in hepatocytes. Further investigations are needed to ex-
plore the underlying mechanisms and potential thera-
peutic targets to mitigate the risk of liver cancer associ-
ated with CR disruptions.**#

Mice with PER2 gene mutations, BMALI"" mice,
as well as mice deficient in both PER] and PER2 or CRY1
and CRY2 have shown an increased susceptibility to sponta-
neous and radiation-induced carcinogenesis compared with
wild-type mice.>® Furthermore, in mice with experimental
latitudinal desynchronosis, the development of diethylni-
trosamine-induced liver cancer is accelerated.’’ Moreover,
abnormal expression of core clock genes has been observed
in both human®* and mouse™** hepatocellular carcinoma
biopsy tissue samples.

Hepatocyte proliferation mechanisms have been
extensively described.”® The Bmall-Clock/Weel/Cdc2
pathway is believed to regulate the CR of hepatocyte mi-
tosis.> Disruption of regular PER2 expression has been
found to increase the number of polyploid hepatocytes
in rodents.>’

In recent years, the role of clock genes in regulating
the CR of apoptosis has been established.”® Addition-
ally, Ca?* and melatonin have also been implicated in the
regulation of hepatocyte apoptosis.”” The CRY mutation
activates p53-independent apoptotic pathways in hepato-
cytes, while the CLOCK gene and neuronal PAS domain
protein 2 gene, NPAS2, promote cell proliferation and in-
hibit mitochondrial apoptosis.®

While there has been extensive research on the CRs
of hepatocytes in animals,! there are still several unclear
aspects regarding the structure of these rhythms. Daily
liver autophagy rhythms, synchronized with metabolic
rhythms, have been well described.®* Notably, circa-
dian rhythmicity in hepatocyte size has been observed
in rodents with a natural feeding/fasting cycle, when
the timing of food consumption aligns with their noc-
turnal activity.®® Daily fluctuations in liver, hepatocyte,
and nuclear size are influenced not only by circadian
dynamics of protein content but also by changes in the
osmotic pressure of the extracellular environment. Other
researchers propose that F-actin plays a significant role
in the circadian dynamics of hepatocyte size.%* It has
also been suggested that the primary pacemaker dictat-
ing hepatocyte size is not the timing of feeding but rather
the SCN of the hypothalamus, which regulates feeding
behavior.®
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Sexual Dimorphism of Liver Functions and Their
Daily Rhythm

Due to the complexity of gender differences in the cir-
cadian rhythmicity of mammals, only a limited number of
studies focus on this issue. Female subjects are often ex-
cluded from studies due to their reproductive cycles and
hormone fluctuations, which may affect results.®® Tradi-
tionally, studies on mammalian CRs predominantly use
male experimental animals or mixed groups, with only
about 20% of studies involving females.”*® Nevertheless,
a few publications have explored the sexual characteris-
tics of the liver circulatory system and its impact on other
organs and tissues.

Notable gender differences have been observed in
the liver structure. Female rats, for instance, have high-
er hepatocellularity and a larger proportion of binuclear
hepatocytes, contributing to higher regenerative abili-
ties.®” Limited clinical evidence suggests similar findings
in humans.”

Several liver functions show gender-specific differ-
ences: for instance, sex-specific production of liver pro-
teins (eg, vitellogenin, a2-microglobulin), bile acids,
xenobiotic transporters, and cytochrome P450 enzymes
involved in sex steroid metabolism.”! The female liver
is characterized by a highly efficient metabolic phenotype
and increased biogenesis, which are crucial for successful
pregnancy;’ the male liver, on the other hand, exhibits
a higher prevalence of severe NASH and fibrosis com-
pared with women.” Sexual dimorphism in energy me-
tabolism has been described in both humans and labora-
tory animals.”

Sexual dimorphism of the liver is believed to be in-
fluenced by the pulsatile secretion of growth hormone
in males and its constant secretion in females, as well
as by androgens and estrogens.” Studies have shown
that male mice lacking the CRY! and CRY?2 genes exhib-
it a near absence of gender-specific liver product expres-
sion, which can be restored with pulsatile administration
of somatotropic hormone.”® Furthermore, disruptions
in the CRs of carbohydrate metabolism have been ob-
served in women with different types of obesity.”” Sex
differences in the CR of carbohydrate metabolism in-
clude decreased glucose tolerance in men compared
with women in the morning.”®

Sex differences in the CR expression of clock genes
have been noted in hepatocytes of mice.” Both male and
female mammals exhibit CRs in lipid and glycogen me-
tabolism in the liver, but gender differences in mesor,
acrophase, and rhythm amplitude have been observed in
mice.® KLF10, a CLOCK-regulated transcription factor
in the liver, influences gene expression in glycolysis and
gluconeogenesis. Loss of KLF10 in male mice leads to
postprandial hyperglycemia, while female mice maintain
normoglycemia.’! Peroxisome proliferator-activated nu-
clear receptors, which play an essential role in hepatic lipid

and glucose metabolism and initiation of the inflammato-
ry response, display sexual dimorphism in CRs.'"” In mice
with induced obesity, females exhibit more pronounced
changes in the daily dynamics of lipid metabolism and
BMALI expression.®? Sexual dimorphism has also been
observed in the expression of genes involved in the liver’s
antioxidant system.®* Additionally, sex differences have
been identified in the characteristics of desynchronosis
during experimental hepatitis.*

Conclusions

The CRs of the liver are endogenous and genetically
determined, yet highly adaptable to external zeitgebers,
with photoperiod and food intake being the most sig-
nificant. Sexual dimorphism in liver functions, particu-
larly in the CR of organ processes under normal and
pathological conditions, remains an issue of interest that
requires further exploration. A deeper understanding of
the nuances of sexual dimorphism in the liver may help
identify appropriate therapeutic targets and improve
risk stratification for patients undergoing treatment for
liver diseases. Hence, it is imperative to investigate the
causes of sexual dimorphism in liver functions and the
nature of CR processes occurring in the organ. Such
studies may aid in unraveling the complex biological
mechanisms underlying liver functions and patholo-
gies and may lead to the development of more effective
treatment strategies.
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