Artificial Intelligence With Neural Network Algorithms in Pediatric Astrocytoma Diagnosis: A Systematic Review
https://doi.org/10.35401/2541-9897-2025-10-1-93-100
Abstract
Background: Astrocytoma is a common pediatric brain tumor that poses a significant health burden. Recent advancements in artificial intelligence (AI), particularly neural network algorithms, have been studied for their precision and efficiency in medical diagnostics via effectively analyzing imaging data to identify patterns and anomalies.
Objective: To systematically review AI-based diagnostic tools with neural network algorithms’ methodologies, sensitivities, specificities, and potential clinical integration for pediatric astrocytoma, providing a consolidated perspective on their overall performance and impact on clinical decision-making.
Methods: As per PRISMA 2020 guidelines, we conducted a comprehensive search in PubMed, Scopus, and ScienceDirect on February 5, 2024. The search strategy was guided by a PECO question focusing on pediatric astrocytoma diagnosis using AI algorithms vs computed tomography or magnetic resonance imaging (MRI). Keywords were terms related to AI and neural network algorithms. We included studies analyzing the diagnostic accuracy of AI-based methods in cases of pediatric astrocytoma (World Health Organization grades 1-3), with no restrictions on a publication year or country. We excluded papers written in languages other than English or Bahasa Indonesia and nonhuman studies. Data was assessed using the Effective Public Health Practice Project tool.
Results: Of 454 articles screened, 6 met inclusion criteria. These studies varied in design, location, and sample size, ranging from 10 to 135 subjects. The AI methods showed high sensitivity and specificity, often surpassing traditional radiological techniques. Notably, neural network algorithms using 3-dimensional MRI demonstrated improved accuracy compared with 2-dimensional MRI (96% vs 77%). The AI models exhibited performance levels comparable to or exceeding that of expert radiologists, with metrics such as tumor classification accuracy of 92% and high values of the area under the receiver operating characteristic curve.
Conclusions: AI with neural network algorithms shows significant promise in enhancing accuracy of pediatric astrocytoma diagnosis. The studies reviewed indicate that these advanced methods can achieve superior sensitivity and specificity compared with conventional diagnostic techniques. Integrating AI into clinical practice could substantially improve diagnostic precision and patient outcomes.
About the Authors
Floresya K. FarmawatiIndonesia
Floresya K. Farmawati, MD, Medical Doctor Profession Program, Faculty of Medicine
Jalan Ir. Sutami 36 Kentingan, Jebres, Surakarta, Central Java 57126
Della W.A. Nurwakhid
Indonesia
Della W. A. Nurwakhid, MD, Department of Pediatrics, Faculty of Medicine
Malang
Tifani A. Pradhea
Indonesia
Tifani A. Pradhea, MD, Medical Doctor Profession Program, Faculty of Medicine
Pontianak
Rayyan Fitriasa
Indonesia
Rayyan Fitriasa, MD, Medical Doctor Profession Program, Faculty of Medicine
Jakarta
Hutami H. Arrahmi
Indonesia
Hutami H. Arrahmi, MD, Medical Doctor Profession Program, Faculty of Medicine
Jakarta
Muhana F. Ilyas
Indonesia
Muhana F. Ilyas, MD, Medical Doctor Profession Program, Faculty of Medicine
Jalan Ir. Sutami 36 Kentingan, Jebres, Surakarta, Central Java 57126
Fadhilah T. Nur
Indonesia
Fadhilah T. Nur, MD, Department of Pediatrics
Jalan Ir. Sutami 36 Kentingan, Jebres, Surakarta, Central Java 57126
References
1. Konovalov NA, Asyutin DS, Shayhaev EG, Kaprovoy SV, Timonin SY. Molecular biomarkers of brain and spinal cord astrocytomas. Acta Naturae. 2019;11(2):17–27. PMID: 31413876. PMCID: PMC6643348. https://doi.org/10.32607/20758251-2019-11-2-17-27
2. Kapoor M, Gupta V. Astrocytoma. In: StatPearls. StatPearls Publishing; 2024. PMID: 32644468.
3. Ostrom QT, Price M, Ryan K, et al. CBTRUS statistical report: pediatric brain tumor foundation childhood and adolescent primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018. Neuro Oncol. 2022;24(Suppl 3):iii1–iii38. PMID: 36066969. PMCID: PMC9447434. https://doi.org/10.1093/neuonc/noac161
4. Mo Z, Xin J, Chai R, Woo PYM, Chan DTM, Wang J. Epidemiological characteristics and genetic alterations in adult diffuse glioma in East Asian populations. Cancer Biol Med. 2022;19(10):1440–1459. PMID: 36350002. PMCID: PMC9630523. https://doi.org/10.20892/j.issn.2095-3941.2022.0418
5. Gajjar A, Bowers DC, Karajannis MA, Leary S, Witt H, Gottardo NG. Pediatric brain tumors: innovative genomic information is transforming the diagnostic and clinical landscape. J Clin Oncol. 2015;33(27):2986–2998. PMID: 26304884. PMCID: PMC4567701. https://doi.org/10.1200/JCO.2014.59.9217
6. Al-Antari MA. Artificial intelligence for medical diagnostics-existing and future AI technology!. Diagnostics (Basel). 2023;13(4):688. PMID: 36832175. PMCID: PMC9955430. https://doi.org/10.3390/diagnostics13040688
7. Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23(1):689. PMID: 37740191. PMCID: PMC10517477. https://doi.org/10.1186/s12909-023-04698-z
8. Al-Antari MA. Advancements in artificial intelligence for medical computer-aided diagnosis. Diagnostics (Basel). 2024;14(12):1265. PMID: 38928680. PMCID: PMC11202700. https://doi.org/10.3390/diagnostics14121265
9. Hu Z, Tang J, Wang Z, Zhang K, Zhang L, Sun Q. Deep learning for image-based cancer detection and diagnosis − a survey. Pattern Recognition. 2018;83:134–149. https://doi.org/10.1016/j.patcog.2018.05.014
10. Levine AB, Schlosser C, Grewal J, Coope R, Jones SJM, Yip S. Rise of the machines: advances in deep learning for cancer diagnosis. Trends Cancer. 2019;5(3):157–169. PMID: 30898263. https://doi.org/10.1016/j.trecan.2019.02.002
11. Habuza T, Navaz AN, Hashim F, et al. AI applications in robotics, diagnostic image analysis and precision medicine: current limitations, future trends, guidelines on CAD systems for medicine. Informatics in Medicine Unlocked. 2021;24:100596. https://doi.org/10.1016/j.imu.2021.100596
12. Khalifa M, Albadawy M. AI in diagnostic imaging: revolutionising accuracy and efficiency. Computer Methods and Programs in Biomedicine Update. 2024;5:100146. https://doi.org/10.1016/j.cmpbup.2024.100146
13. Ho CWL, Soon D, Caals K, Kapur J. Governance of automated image analysis and artificial intelligence analytics in healthcare. Clin Radiol. 2019;74(5):329–337. PMID: 30898383. https://doi.org/10.1016/j.crad.2019.02.005
14. Dai L, Zhou M, Liu H. Recent applications of convolutional neural networks in medical data analysis. In: Hassan A, Prasad VK, Bhattacharya P, Dutta P, Damaševičius R, eds. Federated Learning and AI for Healthcare 5.0. IGI Global; 2023:119–131. https://doi.org/10.4018/979-8-3693-1082-3.ch007
15. Mohammed FA, Tune KK, Assefa BG, Jett M, Muhie S. Medical image classifications using convolutional neural networks: a survey of current methods and statistical modeling of the literature. Machine Learning and Knowledge Extraction. 2024;6(1):699–736. https://doi.org/10.3390/make6010033
16. Desai YK, Jadhav T, Nirmal S, et al. Diagnosis of medical images using convolutional neural networks. Journal of Electrical Systems. 2024;20(6s):2371–2376. https://doi.org/10.52783/jes.3220
17. Li Q, Cai W, Wang X, Zhou Y, Feng DD, Chen M. Medical image classification with convolutional neural network. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV). IEEE; 2014:844–848. https://doi.org/10.1109/icarcv.2014.7064414
18. Yu H, Yang LT, Zhang Q, Armstrong D, Deen MJ. Convolutional neural networks for medical image analysis: state-of-theart, comparisons, improvement and perspectives. Neurocomputing. 2021;444:92–110. https://doi.org/10.1016/j.neucom.2020.04.157
19. Sarvamangala DR, Kulkarni RV. Convolutional neural networks in medical image understanding: a survey. Evol Intell. 2022;15(1):1–22. PMID: 33425040. PMCID: PMC7778711. https://doi.org/10.1007/s12065-020-00540-3
20. Arle JE, Morriss C, Wang ZJ, Zimmerman RA, Phillips PG, Sutton LN. Prediction of posterior fossa tumor type in children by means of magnetic resonance image properties, spectroscopy, and neural networks. J Neurosurg. 1997;86(5):755–761. PMID: 9126888. https://doi.org/10.3171/jns.1997.86.5.0755
21. Bidiwala S, Pittman T. Neural network classification of pediatric posterior fossa tumors using clinical and imaging data. Pediatr Neurosurg. 2004;40(1):8–15. PMID: 15007223. https://doi.org/10.1159/000076571
22. Fetit AE, Novak J, Peet AC, Arvanitits TN. Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed. 2015;28(9):1174– 1184. PMID: 26256809. https://doi.org/10.1002/nbm.3353
23. Grist JT, Withey S, MacPherson L, et al. Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: a multi-site study. Neuroimage Clin. 2020;25:102172. PMID: 32032817. PMCID: PMC7005468. https://doi.org/10.1016/j.nicl.2020.102172
24. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. PMID: 33782057. PMCID: PMC8005924. https://doi.org/10.1136/bmj.n71
25. Thomas BH, Ciliska D, Dobbins M, Micucci S. A process for systematically reviewing the literature: providing the research evidence for public health nursing interventions. Worldviews Evid Based Nurs. 2004;1(3):176–184. PMID: 17163895. https://doi.org/10.1111/j.1524-475X.2004.04006.x
26. Quon JL, Bala W, Chen LC, et al. Deep learning for pediatric posterior fossa tumor detection and classification: a multi-institutional study. AJNR Am J Neuroradiol. 2020;41(9):1718–1725. PMID: 32816765. PMCID: PMC7583118. https://doi.org/10.3174/ajnr.A6704
27. Orphanidou-Vlachou E, Vlachos N, Davies NP, Arvanitis TN, Grundy RG, Peet AC. Texture analysis of T1- and T2-weighted MR images and use of probabilistic neural network to discriminate posterior fossa tumours in children. NMR Biomed. 2014;27(6):632–639. PMID: 24729528. PMCID: PMC4529665. https://doi.org/10.1002/nbm.3099
28. Rodriguez Gutierrez D, Awwad A, Meijer L, et al. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. AJNR Am J Neuroradiol. 2014;35(5):1009–1015. PMID: 24309122. PMCID: PMC7964560. https://doi.org/10.3174/ajnr.A3784
29. Li M, Wang H, Shang Z, Yang Z, Zhang Y, Wan H. Ependymoma and pilocytic astrocytoma: differentiation using radiomics approach based on machine learning. J Clin Neurosci. 2020;78:175–180. PMID: 32336636. https://doi.org/10.1016/j.jocn.2020.04.080
30. Zarinabad N, Abernethy LJ, Avula S, et al. Application of pattern recognition techniques for classification of pediatric brain tumors by in vivo 3T 1 H-MR spectroscopy-a multi-center study. Magn Reson Med. 2018;79(4):2359–2366. PMID: 28786132. PMCID: PMC5850456. https://doi.org/10.1002/mrm.26837
31. Zhou H, Hu R, Tang O, et al. Automatic Machine learning to differentiate pediatric posterior fossa tumors on routine MR imaging. AJNR Am J Neuroradiol. 2020;41(7):1279–1285. PMID: 32661052. PMCID: PMC7357647. https://doi.org/10.3174/ajnr.A6621
32. Kaifi R. A review of recent advances in brain tumor diagnosis based on AI-based classification. Diagnostics (Basel). 2023;13(18):3007. PMID: 37761373. PMCID: PMC10527911. https://doi.org/10.3390/diagnostics13183007
33. Mathivanan SK, Sonaimuthu S, Murugesan S, Rajadurai H, Shivahare BD, Shah MA. Employing deep learning and transfer learning for accurate brain tumor detection. Sci Rep. 2024;14(1):7232. PMID: 38538708. PMCID: PMC10973383. https://doi.org/10.1038/s41598-024-57970-7
34. Khalighi S, Reddy K, Midya A, Pandav KB, Madabhushi A, Abedalthagafi M. Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment. NPJ Precis Oncol. 2024;8(1):80. PMID: 38553633. PMCID: PMC10980741. https://doi.org/10.1038/s41698-024-00575-0
35. Cè M, Irmici G, Foschini C, et al. Artificial intelligence in brain tumor imaging: a step toward personalized medicine. Curr Oncol. 2023;30(3):2673–2701. PMID: 36975416. PMCID: PMC10047107. https://doi.org/10.3390/curroncol30030203.
Review
For citations:
Farmawati F.K., Nurwakhid D.W., Pradhea T.A., Fitriasa R., Arrahmi H.H., Ilyas M.F., Nur F.T. Artificial Intelligence With Neural Network Algorithms in Pediatric Astrocytoma Diagnosis: A Systematic Review. Innovative Medicine of Kuban. 2025;10(1):93-100. (In Russ.) https://doi.org/10.35401/2541-9897-2025-10-1-93-100