Protective Potential of Sodium-Glucose Cotransporter 2 Inhibitors in Internal Medicine (Part 2)
https://doi.org/10.35401/2541-9897-2025-10-1-101-109
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are now uncovering new possibilities in the field of internal medicine owing to their diverse protective effects. In the second part of the literature review, we explore potential applications of SGLT2i in hepatology, neurology, ophthalmology, and oncology, mechanisms of action of such drugs as dapagliflozin, empagliflozin, canagliflozin, etc, and their effect on different organs and systems.
About the Authors
Ashot A. AvagimyanArmenia
Ashot A. Avagimyan, Cand. Sci. (Med.), Assistant Professor at the Department of Internal Diseases Propaedeutics
Koryun 2a, Yerevan, 0025, Armenia
Mohammad Sheibani
Islamic Republic of Iran
Mohammad Sheibani, PhD, Assistant Professor at the Department of Pharmacology
Tehran
Artem I. Trofimenko
Russian Federation
Artem I. Trofimenko, Cand. Sci. (Med.), Associate Professor at the Pathological Physiology Department
Krasnodar
Evgenii E. Lysov
Russian Federation
Evgenii E. Lysov, Assistant Professor at the Pathological Physiology Department
Krasnodar
Farida M. Khamidova
Uzbekistan
Farida M. Khamidova, Dr. Sci. (Med.), Associate Professor, Head of the Pathological Anatomy Department
Samarkand
Anahit Z. Aznauryan
Armenia
Anahit Z. Aznauryan, Cand. Sci. (Bio.), Associate Professor at the Histology Department
Koryun 2a, Yerevan, 0025, Armenia
Lilit M. Sukiasyan
Armenia
Lilit M. Sukiasyan, Cand. Sci. (Bio.), Researcher, Central Research Laboratory
Koryun 2a, Yerevan, 0025, Armenia
Karmen T. Sahakyan
Armenia
Karmen T. Sahakyan, Dr. Sci. (Bio.), Professor, Head of the Histology Department
Koryun 2a, Yerevan, 0025, Armenia
Tamara R. Gevorgyan
Armenia
Tamara R. Gevorgyan, Cand. Sci. (Med.), Associate Professor at the Ophthalmology Department
Koryun 2a, Yerevan, 0025, Armenia
Marina R. Tatoyan
Armenia
Marina R. Tatoyan, Dr. Sci. (Bio.), Professor at the Histology Department
Koryun 2a, Yerevan, 0025, Armenia
Gayane L. Mkrtchyan
Armenia
Gayane L. Mkrtchyan, Cand. Sci. (Bio.), Associate Professor at the Histology Department
Koryun 2a, Yerevan, 0025, Armenia
Goharik L. Meltonyan
Armenia
Goharik L. Meltonyan, Cand. Sci. (Bio.), Associate Professor at the Histology Department
Koryun 2a, Yerevan, 0025, Armenia
Anna R. Petrosyan
Armenia
Anna R. Petrosyan, Lecturer at the Department of Pathological Anatomy and Clinical Morphology
Koryun 2a, Yerevan, 0025, Armenia
Ludmila A. Martemyanova
Belarus
Ludmila A. Martemyanova, Cand. Sci. (Med.), Associate Professor, Head of the Pathological Anatomy Department
Gomel
Ruzanna R. Petrosyan
Lebanon
Ruzanna R. Petrosyan, MD, PhD, MHPE, Assistant Professor (Anatomy), Gilbert and Rose-Marie Chagoury School of Medicine
Beirut
Olga I. Urazova
Russian Federation
Olga I. Urazova, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Pathophysiology Department
Tomsk
Nana V. Pogosova
Russian Federation
Nana V. Pogosova, Dr. Sci. (Med.), Professor, Deputy General Director for Science and Preventive Cardiology
Moscow
Nizal Sarrafzadegan
Islamic Republic of Iran
Nizal Sarrafzadegan, PhD, Distinguished Professor, Isfahan Cardiovascular Research Centre
Isfahan
References
1. Vafa RG, Sabahizadeh A, Mofarrah R. Guarding the heart: how SGLT-2 inhibitors protect against chemotherapy-induced cardiotoxicity: SGLT-2 inhibitors and chemotherapy-induced cardiotoxicity. Curr Probl Cardiol. 2024;49(3):102350. PMID: 38128634. https://doi.org/10.1016/j.cpcardiol.2023.102350
2. Lin L, Zhong S, Zhou Y, et al. Dapagliflozin improves the dysfunction of human umbilical vein endothelial cells (HUVECs) by downregulating high glucose/high fat-induced autophagy through inhibiting SGLT-2. J Diabetes Complications. 2025;39(1):108907. PMID: 39580877. https://doi.org/10.1016/j.jdiacomp.2024.108907
3. AvagimyanAA, Sheibani M, TrofimenkoAI, et al. Protective potential of sodium-glucose cotransporter 2 inhibitors in internal medicine (part 1). Innovative Medicine of Kuban. 2024;9(4):126– 135. https://doi.org/10.35401/2541-9897-2024-9-4-126-135
4. Bhanushali KB, Asnani HK, Nair A, Ganatra S, Dani SS. Pharmacovigilance study for SGLT 2 inhibitors- safety review of real-world data & randomized clinical trials. Curr Probl Cardiol. 2024;49(9):102664. https://doi.org/10.1016/j.cpcardiol.2024.102664
5. Pouwels S, Sakran N, Graham Y, et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord. 2022;22(1):63. PMID: 35287643. PMCID: PMC8919523. https://doi.org/10.1186/s12902-022-00980-1
6. Nassir F. NAFLD: mechanisms, treatments, and biomarkers. Biomolecules. 2022;12(6):824. PMID: 35740949. PMCID: PMC9221336. https://doi.org/10.3390/biom12060824
7. Nakano D, Akiba J, Tsutsumi T, et al. Hepatic expression of sodium-glucose cotransporter 2 (SGLT2) in patients with chronic liver disease. Med Mol Morphol. 2022;55(4):304–315. PMID: 36131166. PMCID: PMC9606064. https://doi.org/10.1007/s00795-022-00334-9
8. Cusi K, Bril F, Barb D, et al. Effect of canagliflozin treatment on hepatic triglyceride content and glucose metabolism in patients with type 2 diabetes. Diabetes Obes Metab. 2019;21(4):812– 821. PMID: 30447037. https://doi.org/10.1111/dom.13584
9. Calapkulu M, Cander S, Gul OO, Ersoy C. Lipid profile in type 2 diabetic patients with new dapagliflozin treatment; actual clinical experience data of six months retrospective lipid profile from single center. Diabetes Metab Syndr. 2019;13(2):1031–1034. PMID: 31336439. https://doi.org/10.1016/j.dsx.2019.01.016
10. Akuta N, Watanabe C, Kawamura Y, et al. Effects of a sodium-glucose cotransporter 2 inhibitor in nonalcoholic fatty liver disease complicated by diabetes mellitus: preliminary prospective study based on serial liver biopsies. Hepatol Commun. 2017;1(1):46–52. PMID: 29404432. PMCID: PMC5747031. https://doi.org/10.1002/hep4.1019
11. Lai LL, Vethakkan SR, Nik Mustapha NR, Mahadeva S, Chan WK. Empagliflozin for the treatment of nonalcoholic steatohepatitis in patients with type 2 diabetes mellitus. Dig Dis Sci. 2020;65(2):623–631. PMID: 30684076. https://doi.org/10.1007/s10620-019-5477-1
12. Bellanti F, Lo Buglio A, Dobrakowski M, et al. Impact of sodium glucose cotransporter-2 inhibitors on liver steatosis/fibrosis/inflammation and redox balance in non-alcoholic fatty liver disease. World J Gastroenterol. 2022;28(26):3243–3257. PMID: 36051336. PMCID: PMC9331534. https://doi.org/10.3748/wjg.v28.i26.3243
13. Arai T, Atsukawa M, Tsubota A, et al. Antifibrotic effect and long-term outcome of SGLT2 inhibitors in patients with NAFLD complicated by diabetes mellitus. Hepatol Commun. 2022;6(11):3073–3082. PMID: 36039537. PMCID: PMC9592771. https://doi.org/10.1002/hep4.2069
14. Sakurai S, Jojima T, Iijima T, Tomaru T, Usui I, Aso Y. Empagliflozin decreases the plasma concentration of plasminogen activator inhibitor-1 (PAI-1) in patients with type 2 diabetes: association with improvement of fibrinolysis. J Diabetes Complications. 2020;34(11):107703. PMID: 32883567. https://doi.org/10.1016/j.jdiacomp.2020.107703
15. Arai T, Atsukawa M, Tsubota A, et al. Effect of sodiumglucose cotransporter 2 inhibitor in patients with non-alcoholic fatty liver disease and type 2 diabetes mellitus: a propensity score-matched analysis of real-world data. Ther Adv Endocrinol Metab. 2021;12:20420188211000243. PMID: 33815743. PMCID: PMC7989116. https://doi.org/10.1177/20420188211000243
16. Xing B, Zhao Y, Dong B, Lv W, Zhao W. Effects of sodium-glucose cotransporter 2 inhibitors on non-alcoholic fatty liver disease in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. J Diabetes Investig. 2020;11(5):1238– 1247. PMID: 32083798. PMCID: PMC7477503. https://doi.org/10.1111/jdi.13237
17. Simental-Mendía M, Sánchez-García A, RodríguezRamírez M, Simental-Mendía LE. Effect of sodium-glucose co-transporter 2 inhibitors on hepatic parameters: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2021;163:105319. PMID: 33246172. https://doi.org/10.1016/j.phrs.2020.105319
18. Zhou P, Tan Y, Hao Z, et al. Effects of SGLT2 inhibitors on hepatic fibrosis and steatosis: a systematic review and metaanalysis. Front Endocrinol (Lausanne). 2023;14:1144838. PMID: 36936142. PMCID: PMC10014961. https://doi.org/10.3389/fendo.2023.1144838
19. Kalantari E, Zolbanin NM, Ghasemnejad-Berenji M. Protective effects of empagliflozin on methotrexate induced hepatotoxicity in rats. Biomed Pharmacother. 2024;170:115953. PMID: 38064971. https://doi.org/10.1016/j.biopha.2023.115953
20. Satyam SM, Bairy LK, Rehman A, et al. Dapagliflozin: a promising strategy to combat cisplatin-induced hepatotoxicity in Wistar rats. Biology (Basel). 2024;13(9):672. PMID: 39336099. PMCID: PMC11428795. https://doi.org/10.3390/biology13090672
21. Teshev AF, Malyshev AV, Golovin AS. Proliferative diabetic retinopathy in severe stages: modern approaches to diagnosis and treatment (systematic review). Russian Medicine. 2024;30(1):77– 85. (In Russ.). https://doi.org/10.17816/medjrf624868
22. Wong TY, Sabanayagam C. Strategies to tackle the global burden of diabetic retinopathy: from epidemiology to artificial intelligence. Ophthalmologica. 2020;243(1):9–20. PMID: 31408872. https://doi.org/10.1159/000502387
23. Lahoti S, Nashawi M, Sheikh O, Massop D, Mir M, ChiltonR. Sodium-glucose co-transporter 2 inhibitors and diabetic retinopathy: insights into preservation of sight and looking beyond. Cardiovasc Endocrinol Metab. 2020;10(1):3–13. PMID: 33634250. PMCID: PMC7901818. https://doi.org/10.1097/XCE.0000000000000209
24. Nadelmann JB, Miller CG, McGeehan B, Yu Y, VanderBeek BL. SGLT2 inhibitors and diabetic retinopathy progression. Graefes Arch Clin Exp Ophthalmol. 2024;262(3):753–758. PMID: 37847267. PMCID: PMC11196159. https://doi.org/10.1007/s00417-023-06273-0
25. Yen FS, Wei JC, Yu TS, Hung YT, Hsu CC, Hwu CM. Sodium-glucose cotransporter 2 inhibitors and risk of retinopathy in patients with type 2 diabetes. JAMA Netw Open. 2023;6(12):e2348431. PMID: 38117497. PMCID: PMC10733799. https://doi.org/10.1001/jamanetworkopen.2023.48431
26. Benlarbi-Ben Khedher M, Hajri K, Dellaa A, et al. Astaxanthin inhibits aldose reductase activity in Psammomys obesus, a model of type 2 diabetes and diabetic retinopathy. Food Sci Nutr. 2019;7(12):3979–3985. PMID: 31890176. PMCID: PMC6924305. https://doi.org/10.1002/fsn3.1259
27. Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–412. PMID: 10938048. PMCID: PMC27454. https://doi.org/10.1136/bmj.321.7258.405
28. American Diabetes Association. 1. Improving Care and Promoting Health in Populations: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S7–S13. PMID: 31862744. https://doi.org/10.2337/dc20-S001
29. Ott C, Jumar A, Striepe K, et al. A randomised study of the impact of the SGLT2 inhibitor dapagliflozin on microvascular and macrovascular circulation. Cardiovasc Diabetol. 2017;16(1):26. PMID: 28231831. PMCID: PMC5324272. https://doi.org/10.1186/s12933-017-0510-1
30. Yoshizumi H, Ejima T, Nagao T, Wakisaka M. Recovery from diabetic macular edema in a diabetic patient after minimal dose of a sodium glucose co-transporter 2 inhibitor. Am J Case Rep. 2018;19:462–466. PMID: 29670074. PMCID: PMC5928754. https://doi.org/10.12659/ajcr.909708
31. Straznicky NE, Grima MT, Eikelis N, et al. The effects of weight loss versus weight loss maintenance on sympathetic nervous system activity and metabolic syndrome components. J Clin Endocrinol Metab. 2011;96(3):E503–E508. PMID: 21177786. https://doi.org/10.1210/jc.2010-2204
32. Thorp AA, Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J Diabetes Res. 2015;2015:341583. PMID: 26064978. PMCID: PMC4430650. https://doi.org/10.1155/2015/341583
33. Matthews VB, Elliot RH, Rudnicka C, Hricova J, Herat L, Schlaich MP. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J Hypertens. 2017;35(10):2059–2068. PMID: 28598954. https://doi.org/10.1097/HJH.0000000000001434
34. Cunningham C, Jabri A, Alhuneafat L, Aneja A. A comprehensive guide to sodium glucose cotransport inhibitors. Curr Probl Cardiol. 2023;48(10):101817. PMID: 37211299. https://doi.org/10.1016/j.cpcardiol.2023.101817
35. WangS, XuL, JonasJB, etal. Major eye diseases and risk factors associated with systemic hypertension in an adult Chinese population: the Beijing Eye Study. Ophthalmology. 2009;116(12):2373–2380. PMID: 19815279. https://doi.org/10.1016/j.ophtha.2009.05.041
36. Zhang HY, Wang JY, Ying GS, Shen LP, Zhang Z. Serum lipids and other risk factors for diabetic retinopathy in Chinese type 2 diabetic patients. J Zhejiang Univ Sci B. 2013;14(5):392–399. PMID: 23645176. PMCID: PMC3650453. https://doi.org/10.1631/jzus.B1200237
37. Filippas-Ntekouan S, Tsimihodimos V, Filippatos T, Dimitriou T, Elisaf M. SGLT-2 inhibitors: pharmacokinetics characteristics and effects on lipids. Expert Opin Drug Metab Toxicol. 2018;14(11):1113–1121. PMID: 30360662. https://doi.org/10.1080/17425255.2018.1541348
38. LiJX, HungYT, Bair H, Hsu SB, Hsu CY, Lin CJ. Sodiumglucose co-transporter 2 inhibitor add-on therapy for metformin delays diabetic retinopathy progression in diabetes patients: a population-based cohort study. Sci Rep. 2023;13(1):17049. PMID: 37816862. PMCID: PMC10564914. https://doi.org/10.1038/s41598-023-43893-2
39. Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg effect 97 years after its discovery. Cancers (Basel). 2020;12(10):2819. PMID: 33008042. PMCID: PMC7599761. https://doi.org/10.3390/cancers12102819
40. Wang Y, Patti GJ. The Warburg effect: a signature of mitochondrial overload. Trends Cell Biol. 2023;33(12):1014– 1020. PMID: 37117116. PMCID: PMC10600323. https://doi.org/10.1016/j.tcb.2023.03.013
41. Naeimzadeh Y, Tajbakhsh A, Nemati M, Fallahi J. Exploring the anti-cancer potential of SGLT2 inhibitors in breast cancer treatment in pre-clinical and clinical studies. Eur J Pharmacol. 2024;978:176803. PMID: 38950839. https://doi.org/10.1016/j.ejphar.2024.176803
42. Basak D, Gamez D, Deb S. SGLT2 inhibitors as potential anticancer agents. Biomedicines. 2023;11(7):1867. PMID: 37509506. PMCID: PMC10376602. https://doi.org/10.3390/biomedicines11071867
43. Dhas Y, Biswas N, M R D, Jones LD, Ashili S. Repurposing metabolic regulators: antidiabetic drugs as anticancer agents. Mol Biomed. 2024;5(1):40. PMID: 39333445. PMCID: PMC11436690. https://doi.org/10.1186/s43556-024-00204-z
44. Masoudkabir F, Mohammadifard N, Mani A, et al. Shared lifestyle-related risk factors of cardiovascular disease and cancer: evidence for joint prevention. ScientificWorldJournal. 2023;2023:2404806. PMID: 37520844. PMCID: PMC10386903. https://doi.org/10.1155/2023/2404806
45. Phoomak C, Vaeteewoottacharn K, Silsirivanit A, et al. High glucose levels boost the aggressiveness of highly metastatic cholangiocarcinoma cells via O-GlcNAcylation. Sci Rep. 2017;7:43842. PMID: 28262738. PMCID: PMC5338328. https://doi.org/10.1038/srep43842
46. Zhou J, Zhu J, Yu SJ, et al. Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway. Biomed Pharmacother. 2020;132:110821. PMID: 33068934. https://doi.org/10.1016/j.biopha.2020.110821
47. Villani LA, Smith BK, Marcinko K, et al. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration. Mol Metab. 2016;5(10):1048–1056. PMID: 27689018. PMCID: PMC5034684. https://doi.org/10.1016/j.molmet.2016.08.014
48. Kennedy SP, O’Neill M, Cunningham D, et al. Preclinical evaluation of a novel triple-acting PIM/PI3K/mTOR inhibitor, IBL-302, in breast cancer. Oncogene. 2020;39(14):3028–3040. PMID: 32042115. PMCID: PMC7118022. https://doi.org/10.1038/s41388-020-1202-y
49. Nakano D, Kawaguchi T, Iwamoto H, Hayakawa M, Koga H, Torimura T. Effects of canagliflozin on growth and metabolic reprograming in hepatocellular carcinoma cells: multi-omics analysis of metabolomics and absolute quantification proteomics (iMPAQT). PLoS One. 2020;15(4):e0232283. PMID: 32343721. PMCID: PMC7188283. https://doi.org/10.1371/journal.pone.0232283
50. Yu N, Kakunda M, Pham V, et al. HSP105 recruits protein phosphatase 2A to dephosphorylate β-catenin. Mol Cell Biol. 2015;35(8):1390–1400. PMID: 25645927. PMCID: PMC4372692. https://doi.org/10.1128/MCB.01307-14
51. Puglisi S, Rossini A, Poli R, et al. Effects of SGLT2 inhibitors and GLP-1 receptor agonists on renin-angiotensin-aldosterone system. Front Endocrinol (Lausanne). 2021;12:738848. PMID: 34745006. PMCID: PMC8567993. https://doi.org/10.3389/fendo.2021.738848
52. Cappetta D, De Angelis A, Bellocchio G, et al. Sodium-glucose cotransporter 2 inhibitors and heart failure: a bedside-to-bench journey. Front Cardiovasc Med. 2021;8:810791. PMID: 35004918. PMCID: PMC8733295. https://doi.org/10.3389/fcvm.2021.810791
53. Liu T, Wu J, Shi S, et al. Dapagliflozin attenuates cardiac remodeling and dysfunction in rats with β-adrenergic receptor overactivation through restoring calcium handling and suppressing cardiomyocyte apoptosis. Diab Vasc Dis Res. 2023;20(4):14791641231197106. PMID: 37589258. PMCID: PMC10437211. https://doi.org/10.1177/14791641231197106
54. Avagimyan A, Kakturskiy L, Heshmat-Ghahdarijani K, Pogosova N, Sarrafzadegan N. Anthracycline associated disturbances of cardiovascular homeostasis. Curr Probl Cardiol. 2022;47(5):100909. PMID: 34167841. https://doi.org/10.1016/j.cpcardiol.2021.100909
55. Avagimyan AA, Trofimenko AI, Sheibani M, et al. Comparison of cardioprotective effects of dapagliflozin and trimetazidine in the model of doxorubicin-cyclophosphamide cardiotoxicity. Innovative Medicine of Kuban. 2023;8(4):6–14. (In Russ.). https://doi.org/10.35401/2541-9897-2023-8-4-6-14
56. Avagimyan A, Kakturskiy L, Pogosova N, Ottaviani G, Rizzo M, Sarrafzadegan N. Doxorubicin and cyclophosphamide mode of chemotherapy-related cardiomyopathy: review of preclinical model. Curr Probl Cardiol. 2025;50(1):102882. PMID: 39427867. https://doi.org/10.1016/j.cpcardiol.2024.102882
57. Avagimyan A, Pogosova N, Kakturskiy L, et al. Doxorubicin-related cardiotoxicity: review of fundamental pathways of cardiovascular system injury. Cardiovasc Pathol. 2024;73:107683. PMID: 39111556. https://doi.org/10.1016/j.carpath.2024.107683
58. Avagimyan A, Sheibani M, Pogosova N, et al. Possibilities of dapagliflozin-induced cardioprotection on doxorubicin+cyclophosphamide mode of chemotherapy-induced cardiomyopathy. Int J Cardiol. 2023;391:131331. PMID: 37666280. https://doi.org/10.1016/j.ijcard.2023.131331
59. Simanenkova AV, Fuks OS, Timkina NV, et al. Highly selective sodium-glucose co-transporter type 2 inhibitor empagliflozinas means of brain protection in conditions of chronic brain dyscirculation. Probl Endokrinol (Mosk). 2024;70(4):44–56. PMID: 39302864. PMCID: PMC11551795. (In Russ.). https://doi.org/10.14341/probl13336
60. Youssef ME, Yahya G, Popoviciu MS, Cavalu S, Abd-Eldayem MA, Saber S. Unlocking the full potential of SGLT2 inhibitors: expanding applications beyond glycemic control. Int J Mol Sci. 2023;24(7):6039. PMID: 37047011. PMCID: PMC10094124. https://doi.org/10.3390/ijms24076039
61. Mone P, Varzideh F, Jankauskas SS, et al. SGLT2 inhibition via empagliflozin improves endothelial function and reduces mitochondrial oxidative stress: insights from frail hypertensive and diabetic patients. Hypertension. 2022;79(8):1633–1643. PMID: 35703100. PMCID: PMC9642044. https://doi.org/10.1161/HYPERTENSIONAHA.122.19586
62. Zügner E, Yang HC, Kotzbeck P, et al. Differential in vitro effects of SGLT2 inhibitors on mitochondrial oxidative phosphorylation, glucose uptake and cell metabolism. Int J Mol Sci. 2022;23(14):7966. PMID: 35887308. PMCID: PMC9319636. https://doi.org/10.3390/ijms23147966
63. Pawlos A, Broncel M, Woźniak E, Gorzelak-Pabiś P. Neuroprotective effect of SGLT2 inhibitors. Molecules. 2021;26(23):7213. PMID: 34885795. PMCID: PMC8659196. https://doi.org/10.3390/molecules26237213
64. Shaikh S, Rizvi SM, Shakil S, Riyaz S, Biswas D, Jahan R. Forxiga (dapagliflozin): plausible role in the treatment of diabetes-associated neurological disorders. Biotechnol Appl Biochem. 2016;63(1):145–150. PMID: 25402624. https://doi.org/10.1002/ bab.1319
65. Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci. 2019;13:363. PMID: 31440144. PMCID: PMC6692714. https://doi.org/10.3389/fncel.2019.00363
66. Liu J, Shi X, Shao Y. Sodium-glucose cotransporter 1/2 inhibition and risk of neurodegenerative disorders: a Mendelian randomization study. Brain Behav. 2024;14(7):e3624. PMID: 39010704. PMCID: PMC11250420. https://doi.org/10.1002/brb3.3624
67. Lardaro A, Quarta L, Pagnotta S, et al. Impact of sodium glucose cotransporter 2 inhibitors (SGLT2i) therapy on dementia and cognitive decline. Biomedicines. 2024;12(8):1750. PMID: 39200215. PMCID: PMC11351143. https://doi.org/10.3390/biomedicines12081750
68. Shourav MMI, Anisetti B, Meschia J, Lin M. Effects of sodium-glucose co-transporter 2 inhibitors on cognition in patients with diabetes: a systematic review and meta-analysis (P11-9.002). Neurology. 2024;102(17_supplement_1). https://doi.org/10.1212/wnl.0000000000205318
69. YounYJ, Kim S, Jeong HJ, AhYM, YuYM. Sodium-glucose cotransporter-2 inhibitors and their potential role in dementia onset and cognitive function in patients with diabetes mellitus: a systematic review and meta-analysis. Front Neuroendocrinol. 2024;73:101131. PMID: 38367940. https://doi.org/10.1016/j.yfrne.2024.101131.
Review
For citations:
Avagimyan A.A., Sheibani M., Trofimenko A.I., Lysov E.E., Khamidova F.M., Aznauryan A.Z., Sukiasyan L.M., Sahakyan K.T., Gevorgyan T.R., Tatoyan M.R., Mkrtchyan G.L., Meltonyan G.L., Petrosyan A.R., Martemyanova L.A., Petrosyan R.R., Urazova O.I., Pogosova N.V., Sarrafzadegan N. Protective Potential of Sodium-Glucose Cotransporter 2 Inhibitors in Internal Medicine (Part 2). Innovative Medicine of Kuban. 2025;10(1):101-109. (In Russ.) https://doi.org/10.35401/2541-9897-2025-10-1-101-109