Role of Intravascular Imaging in Percutaneous Coronary Interventions for Left Main Coronary Bifurcation Lesions
https://doi.org/10.35401/2541-9897-2025-10-1-119-127
Abstract
The number of interventions for left main coronary bifurcation lesions in the Russian Federation increase annually. Such lesions are among the most challenging cases for endovascular treatment due to a high risk of cardiovascular complications. They are difficult to assess by angiography, and surgeons frequently encounter difficulties during interventions. To avoid complications and improve long-term outcomes, it is crucial to accurately determine the appropriateness of an intervention, assess characteristics of the lesion, and choose the most effective treatment strategy, and intravascular imaging methods, such as fractional flow reserve measurement, intravascular ultrasonography, and optical coherence tomography, can assist in doing so. Recent research demonstrates the effectiveness of these imaging methods at each stage of surgery; however, several contentious and debatable issues that warrant attention and further investigation remain. This article reviews the latest research regarding the use of intravascular imaging to optimize percutaneous coronary interventions in patients with left main coronary bifurcation lesions, as well as to highlight unresolved issues that require further exploration.
About the Authors
Svetlana K. LoginovaRussian Federation
Svetlana K. Loginova, Postgraduate Student, Research Assistant, Department of Hospital Surgery with the Pediatric Surgery Course, Institute of Medicine
ulitsa Miklukho-Maklaya 6, Moscow, 117198
Shoista Sh. Fatulloeva
Russian Federation
Shoista Sh. Fatulloeva, Postgraduate Student, Department of Hospital Surgery with the Pediatric Surgery Course, Institute of Medicine
ulitsa Miklukho-Maklaya 6, Moscow, 117198
Gumer R. Dechev
Russian Federation
Gumer R. Dechev, Postgraduate Student, Department of Hospital Surgery with the Pediatric Surgery Course, Institute of Medicine
ulitsa Miklukho-Maklaya 6, Moscow, 117198
Daniil A. Maximkin
Russian Federation
Daniil A. Maximkin, Cand. Sci. (Med.), Associate Professor at the Department of Hospital Surgery with the Pediatric Surgery Course, Institute of Medicine
ulitsa Miklukho-Maklaya 6, Moscow, 117198
References
1. Alekyan BG, Grigoryan AM, Staferov AV, Kavteladze ZA, Skrypnik DV, Tarasov RS. Endovascular diagnostics and treatment in the Russian Federation (2023). Russian Journal of Endovascular Surgery. 2024;11(theme issue):S5–S300. (In Russ.).
2. Vrints C, Andreotti F, Koskinas KC, et al; ESC Scientific Document Group. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J. 2024;45(36):3415– 3537. PMID: 39210710. https://doi.org/10.1093/eurheartj/ehae177
3. Gogas BD, Fei Y, Song L, et al. Left main coronary interventions: a practical guide. Cardiovasc Revasc Med. 2020;21(12):1596– 1605. PMID: 32546382. https://doi.org/10.1016/j.carrev.2020.05.014
4. Lahti SJ, Feldman DI, Dardari Z, et al. The association between left main coronary artery calcium and cardiovascular-specific and total mortality: The Coronary Artery Calcium Consortium. Atherosclerosis. 2019;286:172–178. PMID: 30954247. PMCID: PMC6599487. https://doi.org/10.1016/j.atherosclerosis.2019.03.015
5. Pellegrini D, Ielasi A, Tespili M, Guagliumi G, De Luca G. Percutaneous treatment of left main disease: a review of current status. J Clin Med. 2023;12(15):4972. PMID: 37568374. PMCID: PMC10419939. https://doi.org/10.3390/jcm12154972
6. Nekrasov AS, Grechishkin AA, Mayngart SV. Successful endovascular treatment for LCA trunk trifurcation lesion. Innovative Medicine of Kuban. 2017;(2):21–26. (In Russ.).
7. Medina A, Suárez de Lezo J, Pan M. Una clasificación simple de las lesiones coronarias en bifurcación. Rev Esp Cardiol. 2006;59(2):183. (In Spanish). PMID: 16540043.
8. Babunashvili AM, Azarov AV, Ardeev VN, et al. Expert group consensus paper of the Russian Scientific Society of Interventional Cardioangiology. On the routine use of intravascular imaging modalities (IVUS, OCT) during endovascular interventions for certain types of coronary artery lesions in chronic coronary syndrome; and on the necessity to equip all national CathLabs with intravascular imaging systems. International Journal of Interventional Cardioangiology. 2023;74(3):9–51. (In Russ.). https://doi.org/10.24835/1727-818x-74-9
9. Räber L, Mintz GS, Koskinas KC, et al; ESC Scientific Document Group. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J. 2018;39(35):3281–3300. Published correction appears in Eur Heart J. 2019;40(3):308. PMID: 29790954. https://doi.org/10.1093/eurheartj/ehy285
10. Johnson TW, Räber L, di Mario C, et al. Clinical use of intracoronary imaging. Part 2: acute coronary syndromes, ambiguous coronary angiography findings, and guiding interventional decision-making: an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J. 2019;40(31):2566–2584. PMID: 31112213. https://doi.org/10.1093/eurheartj/ehz332
11. Mintz GS, Lefèvre T, Lassen JF, et al. Intravascular ultrasound in the evaluation and treatment of left main coronary artery disease: a consensus statement from the European Bifurcation Club. EuroIntervention. 2018;14(4):e467–e474. PMID: 29688182. https://doi.org/10.4244/EIJ-D-18-00194
12. Albiero R, Burzotta F, Lassen JF, et al. Treatment of coronary bifurcation lesions, part I: implanting the first stent in the provisional pathway. The 16th expert consensus document of the Eu-ropean Bifurcation Club. EuroIntervention. 2022;18(5):e362–e376. PMID: 35570748. PMCID: PMC10259243. https://doi.org/10.4244/EIJ-D-22-00165
13. Kuno T, Kiyohara Y, Maehara A, et al. Comparison of intravascular imaging, functional, or angiographically guided coronary intervention. J Am Coll Cardiol. 2023;82(23):2167–2176. PMID: 37995152. https://doi.org/10.1016/j.jacc.2023.09.823
14. Stone GW, Christiansen EH, Ali ZA, et al. Intravascular imaging-guided coronary drug-eluting stent implantation: an updated network meta-analysis. Lancet. 2024;403(10429):824–837. PMID: 38401549. https://doi.org/10.1016/S0140-6736(23)02454-6
15. Sreenivasan J, Reddy RK, Jamil Y, et al. Intravascular imaging-guided versus angiography-guided percutaneous coronary intervention: a systematic review and meta-analysis of randomized trials. J Am Heart Assoc. 2024;13(2):e031111. PMID: 38214263. PMCID: PMC10926835. https://doi.org/10.1161/JAHA.123.031111
16. Muramatsu T, Ozaki Y, Nanasato M, et al; MISTIC-1 Investigators. Comparison between optical frequency domain imaging and intravascular ultrasound for percutaneous coronary intervention guidance in Biolimus A9-eluting stent implantation: a randomized MISTIC-1 non-inferiority trial. Circ Cardiovasc Interv. 2020;13(11):e009314. PMID: 33106049. PMCID: PMC7665240. https://doi.org/10.1161/CIRCINTERVENTIONS.120.009314
17. Kubo T, Shinke T, Okamura T, et al; OPINION Investigators. Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results. Eur Heart J. 2017;38(42):3139– 3147. PMID: 29121226. PMCID: PMC5837511. https://doi.org/10.1093/eurheartj/ehx351
18. Kang DY, Ahn JM, Yun SC, et al; OCTIVUS Investigators. Guiding intervention for complex coronary lesions by optical coherence tomography or intravascular ultrasound. J Am Coll Cardiol. 2024;83(3):401–413. PMID: 37879490. https://doi.org/10.1016/j.jacc.2023.10.017
19. Cortese B, de la Torre Hernandez JM, Lanocha M, et al. Optical coherence tomography, intravascular ultrasound or angiography guidance for distal left main coronary stenting. The ROCK cohort II study. Catheter Cardiovasc Interv. 2022;99(3):664–673. PMID: 34582631. https://doi.org/10.1002/ccd.29959
20. Holm NR, Andreasen LN, Neghabat O, et al; OCTOBER Trial Group. OCT or angiography guidance for PCI in complex bifurcation lesions. N Engl J Med. 2023;389(16):1477–1487. PMID: 37634149. https://doi.org/10.1056/NEJMoa2307770
21. Lee JM, Choi KH, Song YB, et al; RENOVATE-COMPLEX-PCI Investigators. Intravascular imaging-guided or angiography-guided complex PCI. N Engl J Med. 2023;388(18):1668– 1679. https://doi.org/10.1056/NEJMoa2216607
22. Yamamoto K, Shiomi H, Morimoto T, et al; OPTIVUSComplex PCI Investigators. Target lesion revascularization after intravascular ultrasound-guided percutaneous coronary intervention. Circ Cardiovasc Interv. 2023;16(5):e012922. PMID: 37192307. https://doi.org/10.1161/CIRCINTERVENTIONS.123.012922
23. Case BC, Yerasi C, Forrestal BJ, et al. Intravascular ultrasound guidance in the evaluation and treatment of left main coronary artery disease. Int J Cardiol. 2021;325:168-175. PMID: 33039578. https://doi.org/10.1016/j.ijcard.2020.10.008
24. de la Torre Hernandez JM, Hernández Hernandez F, Alfonso F, et al; LITRO Study Group (Spanish Working Group on Interventional Cardiology). Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions results from the multicenter LITRO study. J Am Coll Cardiol. 2011;58(4):351–358. PMID: 21757111. https://doi.org/10.1016/j.jacc.2011.02.064
25. Park SJ, Ahn JM, Kang SJ, et al. Intravascular ultrasoundderived minimal lumen area criteria for functionally significant left main coronary artery stenosis. JACC Cardiovasc Interv. 2014;7(8):868–874. PMID: 25147031. https://doi.org/10.1016/j.jcin.2014.02.015
26. Jasti V, Ivan E, Yalamanchili V, Wongpraparut N, Leesar MA. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation. 2004;110(18):2831–2836. PMID: 15492302. https://doi.org/10.1161/01.CIR.0000146338.62813.E7
27. Mintz GS, Bourantas CV, Chamié D. intravascular imaging for percutaneous coronary intervention guidance and optimization: the evidence for improved patient outcomes. J Soc Cardiovasc Angiogr Interv. 2022;1(6):100413. PMID: 39132365. PMCID: PMC11307675. https://doi.org/10.1016/j.jscai.2022.100413
28. Zhang M, Matsumura M, Usui E, et al. Intravascular ultrasound-derived calcium score to predict stent expansion in severely calcified lesions. Circ Cardiovasc Interv. 2021;14(10):e010296. PMID: 34665658. https://doi.org/10.1161/CIRCINTERVENTIONS.120.010296
29. Kim JH, Kang DY, Ahn JM, et al. Optimal minimal stent area and impact of stent underexpansion in left main up-front 2-stent strategy. Circ Cardiovasc Interv. 2024;17(1):e013006. PMID: 38227699. https://doi.org/10.1161/CIRCINTERVENTIONS.123.013006
30. Rodriguez-Leor O, de la Torre Hernández JM, García-Camarero T, et al. Instantaneous wave-free ratio for the assessment of intermediate left main coronary artery stenosis: correlations with fractional flow reserve/intravascular ultrasound and prognostic implications: the iLITRO-EPIC07 study. Circ Cardiovasc Interv. 2022;15(11):861–871. PMID: 36111801. PMCID: PMC9648986. https://doi.org/10.1161/CIRCINTERVENTIONS.122.012328
31. Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2022;145(3):e4–e17. Published correction appears in Circulation. 2022;145(11):e771. PMID: 34882436. https://doi.org/10.1161/CIR.0000000000001039
32. Scarsini R, Fezzi S, Pesarini G, et al. Impact of physiologically diffuse versus focal pattern of coronary disease on quantitative flow reserve diagnostic accuracy. Catheter Cardiovasc Interv. 2022;99(3):736–745. PMID: 34761492. PMCID: PMC9544909. https://doi.org/10.1002/ccd.30007
33. Warisawa T, Cook CM, Ahmad Y, et al. Physiological assessment with iFR prior to FFR measurement in left main disease. Cardiovasc Interv Ther. 2024;39(3):241–251. PMID: 38642290. PMCID: PMC11164744. https://doi.org/10.1007/s12928-024-00989-4
34. Matchin YG, Gramovich VV, Darenskiy DI, Mitroshkin MG, Atanesyan RV, Zharova EA. Method of instantaneous wave-free ratio in comparison with fractional flow reserve in assessment of the physiological significance of intermediate coronary stenosis. Kardiologicheskii vestnik. 2015;10(1):38–43. (In Russ.).
35. Nakayama M, Sakai K, Munhoz D, et al. Discordance in the pattern of coronary artery disease between resting and hyperemic conditions. JACC Cardiovasc Interv. 2022;15(10):e113– e116. PMID: 35367177. https://doi.org/10.1016/j.jcin.2022.01.303
36. Fezzi S, Huang J, Lunardi M, et al. Coronary physiology in the catheterisation laboratory: an A to Z practical guide. AsiaIntervention. 2022;8(2):86–109. PMID: 36798834. PMCID: PMC9890586. https://doi.org/10.4244/AIJ-D-22-00022
37. Collison D, Didagelos M, Aetesam-Ur-Rahman M, et al. Post-stenting fractional flow reserve vs coronary angiography for optimization of percutaneous coronary intervention (TARGETFFR). Eur Heart J. 2021;42(45):4656–4668. PMID: 34279606. PMCID: PMC8634564. https://doi.org/10.1093/eurheartj/ehab449
38. Collet C, Johnson NP, Mizukami T, et al. Impact of postPCI FFR stratified by coronary artery. JACC Cardiovasc Interv. 2023;16(19):2396–2408. PMID: 37821185. https://doi.org/10.1016/j.jcin.2023.08.018
39. Griffioen AM, van den Oord SCH, Teerenstra S, Damman P, van Royen N, van Geuns RJM. Clinical relevance of impaired physiological assessment after percutaneous coronary intervention: a meta-analysis. J Soc Cardiovasc Angiogr Interv. 2022;1(6):100448. PMID: 39132337. PMCID: PMC11307483. https://doi.org/10.1016/j.jscai.2022.100448
40. Jeremias A, Davies JE, Maehara A, et al. Blinded physiological assessment of residual ischemia after successful angiographic percutaneous coronary intervention: the DEFINE PCI study. JACC Cardiovasc Interv. 2019;12(20):1991–2001. PMID: 31648761. https://doi.org/10.1016/j.jcin.2019.05.054
41. Ahn JM, Kang DY, Kim JH, et al. Prognostic value of poststenting fractional flow reserve after imaging-guided optimal stenting. JACC Cardiovasc Interv. 2024;17(7):907–916. PMID: 38599694. https://doi.org/10.1016/j.jcin.2024.01.313.
Review
For citations:
Loginova S.K., Fatulloeva Sh.Sh., Dechev G.R., Maximkin D.A. Role of Intravascular Imaging in Percutaneous Coronary Interventions for Left Main Coronary Bifurcation Lesions. Innovative Medicine of Kuban. 2025;10(1):119-127. (In Russ.) https://doi.org/10.35401/2541-9897-2025-10-1-119-127