Therapeutic Apheresis in Early-Onset Preeclampsia: Literature Review
https://doi.org/10.35401/2541-9897-2025-10-1-144-150
Abstract
Preeclampsia is a multisystem disorder that manifests after 20 weeks’ gestation. It is a leading cause of maternal and fetal morbidity and mortality. Approximately 25% of early-onset preeclampsia cases are severe, and 85% of pregnant women with severe preeclampsia develop multiple organ failure. Stillbirth and early neonatal mortality in women with early-onset preeclampsia are 3%-5% higher than those in cases of late-onset preeclampsia. Birth asphyxia is diagnosed in 100% of newborns. Invasive respiratory support is required in 80% of cases. Every fourth newborn has cardiovascular and central nervous system issues.
The analyzed literature demonstrated a possibility of pregnancy prolongation in early-onset preeclampsia using different therapeutic apheresis techniques, which can reduce negative consequences for newborns and mothers.
About the Authors
Elena N. PlakhotinaRussian Federation
Elena N. Plakhotina, Dr. Sci. (Med.), Head of the Anesthesiology and Intensive Care Unit
ulitsa Zavodskaya 17, Vidnoye, 142700, Moscow Region
Tamara N. Belousova
Russian Federation
Tamara N. Belousova, Cand. Sci. (Med.), Chief Physician
ulitsa Zavodskaya 17, Vidnoye, 142700, Moscow Region
Evgenii V. Bryancev
Russian Federation
Evgenii V. Bryancev, Anesthesiologist-Intensivist, Anesthesiology and Intensive Care Unit
ulitsa Zavodskaya 17, Vidnoye, 142700, Moscow Region
Oksana V. Chaplygina
Russian Federation
Oksana V. Chaplygina, Head of the Anesthesiology and Intensive Care Unit
Moscow
References
1. Nurgaliyeva AN, Nurgaliyeva GT, Kadyrgazina MK, et al. Early and late preeclampsy: maternal, perinatal outcomes and pathomorphological changes of the placenta. Science & Healthcare. 2021;23(5):40–48. (In Russ.).
2. Zamaleeva RS, Cherepanova NA, Frizina AV, Yupatov EYu, Frizin DV. Prediction of placental pathology during the second trimester of pregnancy using a new risk assessment scale and fetal cardiotocography. Gynecology, Obstetrics and Perinatology. 2020;19(5):36– 43. (In Russ.). https://doi.org/10.20953/1726-1678-2020-5-36-43
3. Kovtun OP, Tsyvian PB. Pre-eclampsia in a mother and programming of the child’s cardiovascular health. Rossiyskiy vestnik perinatologii i pediatrii. 2019;64(4):19–25. (In Russ.). https://doi.org/10.21508/1027-4065-2019-64-4-19-25
4. Kinzhalova SV, Makarov RA, Davydova NS, Bychkova SV, Pestryaeva LA. Perinatal outcomes in pregnant women with severe preeclampsia in abdominal delivery under general and spinal anesthesia. Russian Journal of Anaesthesiology and Reanimatology. 2018;(5):36–43. (In Russ.). https://doi.org/10.17116/anaesthesiology201805136
5. Ukah UV, De Silva DA, Payne B, et al. Prediction of adverse maternal outcomes from pre-eclampsia and other hypertensive disorders of pregnancy: a systematic review. Pregnancy Hypertens. 2018;11:115–123. PMID: 29198742. https://doi.org/10.1016/j.preghy.2017.11.006
6. Khodzhaeva ZS, Oshkhunova MS, Muminova KT, Gorina KA, Kholin AM. Prediction and early diagnosis of preeclampsia: scientific perspectives and clinical opportunities. Akusherstvo i ginekologiia. 2022;(12):57–65. (In Russ.). https://doi.org/10.18565/aig.2022.218
7. Lisonkova S, Joseph KS. Incidence of preeclampsia: risk factors and outcomes associated with early- versus late-onset disease. Am J Obstet Gynecol. 2013;209(6):544.e1–544.e12. PMID: 23973398. https://doi.org/10.1016/j.ajog.2013.08.019
8. Timofeeva LA, Karavaeva AL, Zubkov VV, Kirtbaya AR, Kan NE, Tyutyunnik VL. The role of preeclampsia in pregnancy outcomes: the view of a neonatologist. Akusherstvo i ginekologiia. 2019;(4):73–78. (In Russ.). https://doi.org/10.18565/aig.2019.4.73-78
9. Rocha G. Consequences of early-onset preeclampsia on neonatal morbidity and mortality. Minerva Pediatr (Torino). 2023;75(1):87–97. PMID: 35373936. https://doi.org/10.23736/S2724-5276.22.06714-3
10. van Esch JJA, van Heijst AF, de Haan AFJ, van der Heijden OWH. Early-onset preeclampsia is associated with perinatal mortality and severe neonatal morbidity. J Matern Fetal Neonatal Med. 2017;30(23):2789–2794. PMID: 28282780. https://doi.org/10.1080/14767058.2016.1263295
11. Monier I, Ancel PY, Ego A, et al; EPIPAGE 2 Study Group. Gestational age at diagnosis of early-onset fetal growth restriction and impact on management and survival: a population-based cohort study. BJOG. 2017;124(12):1899–1906. PMID: 28266776. https://doi.org/10.1111/1471-0528.14555
12. Shakhbazova NA. Perinatal outcomes in cases with various methods of prevention of hypertensive disorders during pregnancy. Rossiyskiy vestnik perinatologii i pediatrii. 2018;63(3):45–50. (In Russ.). https://doi.org/10.21508/1027-4065-2018-63-3-45-50
13. Zamir M, Nelson DM, Ginosar Y. Hemodynamic consequences of incomplete uterine spiral artery transformation in human pregnancy, with implications for placental dysfunction and preeclampsia. J Appl Physiol (1985). 2021;130(2):457– 465. Published correction appears in J Appl Physiol (1985). 2021;130(5):1351. PMID: 33356980. https://doi.org/10.1152/japplphysiol.00504.2020
14. Abramova MYu, Churnosov MI. Modern concepts of etiology, pathogenesis and risk factors for preeclampsia. Journal of Obstetrics and Women’s Diseases. 2021;70(5):105–116. (In Russ.). https://doi.org/10.17816/jowd77046
15. Panova IA, Kudryashova AV, Rokotyanskaya EA, Malyshkina AI. The characteristics of vascular elastic properties and the immune inflammatory response in pregnant women with hypertension. Rossiiskii vestnik akushera-ginekologa. 2019;19(1):18–26. (In Russ.). https://doi.org/10.17116/rosakush20191901118
16. Striuk RI, Bukhonkina IuM, Smirnova VA, Chizhova GV. Function of endothelium and feto-utero-placental blood flow in pregnant women with arterial hypertension. Kardiologiia. 2010;50(4):18–22. (In Russ.). PMID: 20459416.
17. Jena MK, Sharma NR, Petitt M, Maulik D, Nayak NR. Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules. 2020;10(6):953. PMID: 32599856. PMCID: PMC7357118. https://doi.org/10.3390/biom10060953
18. Gupta AK, Hasler P, Holzgreve W, Gebhardt S, Hahn S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum Immunol. 2005;66(11):1146–1154. PMID: 16571415. https://doi.org/10.1016/j.humimm.2005.11.003
19. Gupta AK, Rusterholz C, Huppertz B, et al. A comparative study of the effect of three different syncytiotrophoblast micro-particles preparations on endothelial cells. Placenta. 2005;26(1):59–66. PMID: 15664412. https://doi.org/10.1016/j.placenta.2004.04.004
20. Gupta A, Hasler P, Gebhardt S, Holzgreve W, Hahn S. Occurrence of neutrophil extracellular DNA traps (NETs) in preeclampsia: a link with elevated levels of cell-free DNA?. Ann N Y Acad Sci. 2006;1075:118–122. PMID: 17108200. https://doi.org/10.1196/annals.1368.015
21. Gupta AK, Hasler P, Holzgreve W, Hahn S. Neutrophil NETs: a novel contributor to preeclampsia-associated placental hypoxia?. Semin Immunopathol. 2007;29(2):163–167. PMID: 17621701. https://doi.org/10.1007/s00281-007-0073-4
22. Kraemer BF, Hennis I, Karge A, et al. Platelet mitochondrial membrane depolarization reflects disease severity in patients with preeclampsia. Mol Med. 2022;28(1):51. PMID: 35508969. PMCID: PMC9066965. https://doi.org/10.1186/s10020-022-00472-x
23. Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–658. PMID: 12618519. PMCID: PMC151901. https://doi.org/10.1172/JCI17189
24. Rana S, Schnettler WT, Powe C, et al. Clinical characterization and outcomes of preeclampsia with normal angiogenic profile. Hypertens Pregnancy. 2013;32(2):189–201. PMID: 23725084. PMCID: PMC3744824. https://doi.org/10.3109/10641955.2013.784788
25. Ivanets TYu, Alekseeva ML, Kan NE, et al. Diagnostic value of placental growth factor and soluble fms-like tyrosine kinase-1 as pre-eclampsia markers. Problemy reproduktsii. 2015;21(4):129– 133. (In Russ.). https://doi.org/10.17116/repro2015214129-133
26. Kurtser MA, Shamanova MB, Sinitsina OV, Nikolaeva AA, Dedlovskaya AI, Samsonova MA. Clinical rationale for determining the ratio sFlt-1/PlGF for the early detection and evaluation of the severity of preeclampsia. Akusherstvo i ginekologiia. 2018;(11):114–120. (In Russ.). https://doi.org/10.18565/aig.2018.11.114-120
27. Nikuei P, Rajaei M, Roozbeh N, et al. Diagnostic accuracy of sFlt1/PlGF ratio as a marker for preeclampsia. BMC Pregnancy Childbirth. 2020;20(1):80. PMID: 32033594. PMCID: PMC7006116. https://doi.org/10.1186/s12884-020-2744-2
28. Verlohren S, Brennecke SP, Galindo A, et al. Clinical interpretation and implementation of the sFlt-1/PlGF ratio in the prediction, diagnosis and management of preeclampsia. Pregnancy Hypertens. 2022;27:42–50. PMID: 34915395. https://doi.org/10.1016/j.preghy.2021.12.003
29. El-Sayed AAF. Preeclampsia: a review of the pathogenesis and possible management strategies based on its pathophysiological derangements. Taiwan J Obstet Gynecol. 2017;56(5):593–598. PMID: 29037542. https://doi.org/10.1016/j.tjog.2017.08.004
30. Thadhani R, Hagmann H, Schaarschmidt W, et al. Removal of soluble fms-like tyrosine kinase-1 by dextran sulfate apheresis in preeclampsia. J Am Soc Nephrol. 2016;27(3):903–913. PMID: 26405111. PMCID: PMC4769204. https://doi.org/10.1681/ ASN.2015020157
31. Gubensek J, Ponikvar R, Premru Srsen T, Fabjan Vodusek V, Moertl MG, Lucovnik M. Therapeutic plasma exchange and dextran-sulfate plasma adsorption as extracorporeal treatments of extremely preterm preeclampsia with fetal growth restriction. J Clin Apher. 2021;36(4):595–605. PMID: 33847403. https://doi.org/10.1002/jca.21899
32. Ertorer ME, Guvenc B, Haydardedeoglu B, Tekinturhan F. A case report of the cascade filtration system: a safe and effective method for low-density lipoprotein apheresis during pregnancy. Ther Apher Dial. 2008;12(5):396–400. PMID: 18937724. https://doi.org/10.1111/j.1744-9987.2008.00616.x
33. Ronco C, Bellomo R. Hemoperfusion: technical aspects and state of the art. Crit Care. 2022;26(1):135. PMID: 35549999. PMCID: PMC9097563. https://doi.org/10.1186/s13054-022-04009-w
34. Thadhani R, Kisner T, Hagmann H, et al. Pilot study of extracorporeal removal of soluble fms-like tyrosine kinase 1 in preeclampsia. Circulation. 2011;124(8):940–950. PMID: 21810665. https://doi.org/10.1161/CIRCULATIONAHA.111.034793
35. Tang XD, Ji TT, Dong JR, et al. Pathogenesis and treatment of cytokine storm induced by infectious diseases. Int J Mol Sci. 2021;22(23):13009. PMID: 34884813. PMCID: PMC8658039. https://doi.org/10.3390/ijms222313009
36. Stefańska K, Zieliński M, Jankowiak M, et al. Cytokine imprint in preeclampsia. Front Immunol. 2021;12:667841. PMID: 34248946. PMCID: PMC8261231. https://doi.org/10.3389/fimmu.2021.667841
37. Pinheiro MB, Martins-Filho OA, Mota AP, et al. Severe preeclampsia goes along with a cytokine network disturbance towards a systemic inflammatory state. Cytokine. 2013;62(1):165– 173. PMID: 23523008. https://doi.org/10.1016/j.cyto.2013.02.027
38. Kutepov DE, Pasechnik IN, Vershinina MG. Current treatment options for sepsis based on sorption methods (review). Laboratornaya sluzhba. 2019;8(4):22–28. (In Russ.). https://doi.org/10.17116/labs2019804122
39. Lorenzin A, Neri M, de Cal M, et al. Fluid dynamics analysis by CT imaging technique of new sorbent cartridges for extracorporeal therapies. Blood Purif. 2019;48(1):18–24. PMID: 31039563. https://doi.org/10.1159/000499076
40. Szczepiorkowski ZM. Indications for therapeutic apheresis in hematological disorders. Semin Hematol. 2020;57(2):57–64. PMID: 32892844. https://doi.org/10.1053/j.seminhematol.2020.07.008
41. Belotserkovtseva LD, Kovalenko LV, Pankratov VV, Zinin VN. Pathogenetic approach to early preeclampsia and the feasibility of pregnancy prolongation. General Reanimatology. 2022;18(2):37– 44. (In Russ.). https://doi.org/10.15360/1813-9779-2022-2-37-44
42. Belotserkovtseva LD, Zinin VN, Kovalenko LV, Pankratov VV, Isaev TI. Cascade filtration plasmapheresis for early preeclampsia: our experience. Gynecology, Obstetrics and Perinatology. 2020;19(5):140–146. (In Russ.). https://doi.org/10.20953/1726-1678-2020-5-140-146
43. PadmanabhanA, Connelly-Smith L, Aqui N, et al. Guidelines on the use of therapeutic apheresis in clinical practice - evidence-based approach from the Writing Committee of the American Society for Apheresis: the eighth special issue. J Clin Apher. 2019;34(3):171–354. PMID: 31180581. https://doi.org/10.1002/jca.21705
44. Iannaccone A, Reisch B, Kimmig R, et al. Therapeutic plasma exchange in early-onset preeclampsia: a 7-year monocentric experience. J Clin Med. 2023;12(13):4289. PMID: 37445324. PMCID: PMC10342637. https://doi.org/10.3390/jcm12134289
45. Trapiella-Alfonso L, Alexandre L, Fraichard C, et al. VEGF (vascular endothelial growth factor) functionalized magnetic beads in a microfluidic device to improve the angiogenic balance in preeclampsia. Hypertension. 2019;74(1):145–153. PMID: 31079531. https://doi.org/10.1161/HYPERTENSIONAHA.118.12380
46. Rduch T, Arn N, Kinkel J, et al. Magnetic blood purification-based soluble fms-like tyrosine kinase-1 removal in comparison with dextran sulfate apheresis and therapeutic plasma exchange. Artif Organs. 2023;47(8):1309–1318. PMID: 36995348. https://doi.org/10.1111/aor.14531.
Review
For citations:
Plakhotina E.N., Belousova T.N., Bryancev E.V., Chaplygina O.V. Therapeutic Apheresis in Early-Onset Preeclampsia: Literature Review. Innovative Medicine of Kuban. 2025;10(1):144-150. (In Russ.) https://doi.org/10.35401/2541-9897-2025-10-1-144-150