Preview

Инновационная медицина Кубани

Расширенный поиск

Биомаркеры сердечной недостаточности: современное состояние вопроса

https://doi.org/10.35401/2500-0268-2021-24-4-67-72

Полный текст:

Аннотация

Ежегодно во всем мире наблюдается прирост числа пациентов с сердечной недостаточностью (СН). Ранняя диагностика состояния и прогнозирование неблагоприятного течения позволяют усовершенствовать тактику ведения пациентов и замедлить прогрессирование заболевания. В настоящий момент наиболее универсальным биомаркером СН считается предшественник мозгового натрийуретического пептида (NT-proBNP), однако и он обладает рядом недостатков. Поиск идеального биомаркера направлен в область молекулярной биологии и генетики. Микрорибонуклеиновые кислоты (микроРНК) выполняют в организме регулирующие функции, обладают кардиоспецифичностью и плазменной устойчивостью.

В ряде исследований микроРНК показали сопоставимую с NT-proBNP диагностическую и прогностическую ценность. Кроме того, потенциальные возможности метода не ограничиваются только диагностикой. МикроРНК могут также использоваться в качестве терапевтических мишеней лечения СН.

Об авторах

О. П. Ишевская
Кубанский государственный медицинский университет
Россия

Ишевская Ольга Петровна, аспирант кафедры терапии
№ 1 ФПК и ППС

350063, Краснодар, ул. М. Седина, 4,



А. М. Намитоков
Кубанский государственный медицинский университет; Научно-исследовательский институт – Краевая клиническая больница № 1 им. проф. С.В. Очаповского
Россия

Намитоков Алим Муратович, к. м. н., ассистент кафедры
терапии № 1 ФПК и ППС; заведующий кардиологическим отделением № 2 для больных с инфарктом миокарда

Краснодар



Е. Д. Космачева
Кубанский государственный медицинский университет; Научно-исследовательский институт – Краевая клиническая больница № 1 им. проф. С.В. Очаповского
Россия

Космачева Елена Дмитриевна, д. м. н., зав. кафедрой
терапии № 1 ФПК и ППС; заместитель главного врача по лечебной работе 

Краснодар



Список литературы

1. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016;37(27):2129–2200. https://doi. org/10.1093/eurheartj/ehw128

2. Ponikowski P, Anker SD, AlHabib KF, et al. Heart faliure: reventing disease and death worldwide. ESC Heart Fail. 2014;1(1):4–25. https://doi.org/10.1002/ehf2.12005

3. Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014;11(5):276–289. https://doi.org/10.1038/nrcardio.2014.26

4. Nagavi M, Wang H, Lozano R, et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013:Asystematic analysisfortheGlobal Burden of Disease Study 2013. Lancet. 2015;385(9963):117–171. https://doi.org/10.1016/S0140-6736(14)61682-2

5. Lloyd-Jones DM, Larson MG, Leip EP, et al. Lifetime risk for developing congestive heart failure: The Framingham Heart Study. Circulation. 2002;106(24):3068–3072. http://doi. org/10.1161/01.CIR.0000039105.49749.6F

6. Atkinson AJ, Colburn WA, DeGruttola VG, et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. https://doi.org/10.1067/mcp.2001.113989

7. VasanRS.Biomarkersofcardiovasculardisease:Molecular basis and practical considerations.Circulation. 2006;113(19):2335– 2362. https://doi.org/10.1161/CIRCULATIONAHA.104.482570

8. Hlatky MA, Greenland P, Arnett DK, et al. Criteria for evaluation of novel markers of cardiovascular risk: A scientific statement from the American heart association. Circulation. 2009;119(17):2408–2416. https://doi.org/10.1161/ CIRCULATIONAHA.109.192278

9. MorrowDA,DeLemosJA.Benchmarksforthe assessment of novel cardiovascular biomarkers. Circulation. 2007;115(8):949– 952. https://doi.org/10.1161/CIRCULATIONAHA.106.683110

10. Tang WHW, Francis GS, Morrow DA, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: Clinical utilization of cardiac biomarker testing in heart failure. Circulation. 2007;116(5):99–109. https://doi.org/10.1161/ CIRCULATIONAHA.107.185267

11. Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, Simic D, Radovanovic S, Simic T. Novel Biomarkers of Heart Failure. Advances in Clinical Chemistry. 2017;79:93–152. https:// doi.org/10.1016/bs.acc.2016.09.002

12. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/ AHA guideline for the management of heart failure: A report of the American college of cardiology foundation/american heart association task force on practice guidelines. J Am Coll Cardiol. 2013;62(16):147–239. https://doi.org/10.1016/j.jacc.2013.05.019

13. Heart Failure Society of America. HFSA 2010 Comprehensive Heart Failure Practice Guideline. J Card Fail. 2010;16(6):e1–2. https://doi.org/10.1016/j.cardfail.2010.04.004

14. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/ HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137–e161. https://doi.org/10.1161/ CIR.0000000000000509

15. Maddox TM, Januzzi JL, Allen LA, et al. 2021 Update to the 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal Issues About Heart Failure With Reduced Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;77(6):772–810. https://doi.org/10.1016/j.jacc.2020.11.022

16. Bachmann KN, Gupta DK, Xu M, et al. Unexpectedly Low Natriuretic Peptide Levels in Patients With Heart Failure. JACC Hear Fail. 2021;9(3):192–200. https://doi.org/10.1016/j. jchf.2020.10.008

17. Costello-Boerrigter LC, Boerrigter G, Redfield MM, et al. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: Determinants and detection of left ventricular dysfunction. J Am Coll Cardiol. 2006;47(2):345–353. https://doi.org/10.1016/j.jacc.2005.09.025

18. Wang TJ, Wollert KC, Larson MG, et al. Prognostic utility of novel biomarkers of cardiovascular stress: The framingham heart study. Circulation. 2012;126(13):1596–1604. https://doi.org/10.1161/CIRCULATIONAHA.112.129437

19. Ibrahim NE, McCarthy CP, Shrestha S, et al. Effect of Neprilysin Inhibition on Various Natriuretic Peptide Assays. J Am Coll Cardiol. 2019;73(11):1273–1284. https://doi.org/10.1016/j. jacc.2018.12.063

20. Richards M, Di Somma S, Mueller C, et al. Atrial fibrillation impairs the diagnostic performance of cardiac natriuretic peptides in dyspneic patients: Results from the BACH study (Biomarkers in ACute Heart Failure). JACC Hear Fail. 2013;1(3):192–199. https://doi.org/10.1016/j.jchf.2013.02.004

21. De Boer RA, Nayor M, DeFilippi CR, et al. Association of cardiovascular biomarkers with incident heart failure with preserved and reduced ejection fraction. JAMA Cardiol. 2018;3(3):215–224. https://doi.org/10.1001/jamacardio.2017.4987

22. Apple FS, Cullen L, Felker GM, Ginsburg G, Morrow D. Cardiovascular Disease: Impact of Biomarkers, Proteomics, and Genomics. Clin Chem. 2017;63(1):1–4. https://doi.org/10.1373/ clinchem.2016.263350

23. Edwards AVG, White MY, Cordwell SJ. The role of proteomics in clinical cardiovascular biomarker discovery. Mol Cell Proteomics. 2008;7(10):1824–1837. https://doi.org/10.1074/ mcp.R800007-MCP200

24. Cappola TP, Matkovich SJ, Wang W, et al. Loss-offunction DNA sequence variant in the CLCNKA chloride channel implicates the cardio-renal axis in interindividual heart failure risk variation. Proc Natl Acad Sci USA. 2011;108(6):2456–2461. https://doi.org/10.1073/pnas.1017494108

25. Villard E, Perret C, Gary F, et al. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur Heart J. 2011;32(9):1065– 1076. https://doi.org/10.1093/eurheartj/ehr105

26. Meder B, Haas J, Sedaghat-Hamedani F, et al. Epigenome-Wide Association Study Identifies Cardiac Gene Patterning and a Novel Class of Biomarkers for Heart Failure. Circulation. 2017;136(16):1528-1544. https://doi.org/10.1161/ CIRCULATIONAHA.117.027355

27. Toma M, Mak GJ, Chen V, et al. Differentiating heart failure phenotypes using sex-specific transcriptomic and proteomic biomarker panels. ESC Hear Fail. 2017;4(3):301–311. https://doi. org/10.1002/ehf2.12136

28. Stenemo M, Nowak C, Byberg L, et al. Circulating proteins as predictors of incident heart failure in the elderly. Eur J Heart Fail. 2018;20(1):55–62. https://doi.org/10.1002/ejhf.980

29. Brioschi M, Gianazza E, Agostoni P, Zoanni B, Mallia A, Banfi C. Multiplexed MRM-based proteomics identified multiple biomarkers of disease severity in human heart failure. Int J Mol Sci. 2021;22(2):1–15. https://doi.org/10.3390/ijms22020838

30. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860– 921. https://doi.org/10.1038/35057062

31. Gomes CPDC, Schroen B, Kuster GM, et al. Regulatory RNAs in Heart Failure. Circulation. 2020;141:313–328. https:// doi.org/10.1161/CIRCULATIONAHA.119.042474

32. PritchardCC,Cheng HH,Tewari M. MicroRNAprofiling: approaches and considerations. Nat Rev Genet. 2012;13(5):358– 369. https://doi.org/10.1038/nrg3198

33. Kozomara A, Birgaoanu M, Griffiths-Jones S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–D162. https://doi.org/10.1093/nar/gky1141

34. Carè A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–618. https://doi.org/10.1038/nm1582

35. Van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA. 2006;103(48):18255–18260. https://doi.org/10.1073/ pnas.0608791103

36. Nagpal V, Rai R, Place AT, et al. MiR-125b Is Critical for Fibroblast-to-Myofibroblast Transition and Cardiac Fibrosis. Circulation. 2016;133(3):291–301. https://doi.org/10.1161/ CIRCULATIONAHA.115.018174

37. Kim IM, Wang Y, Park KM, et al. β-arrestin1-biased β1-adrenergic receptor signaling regulates MicroRNA processing. Circ Res. 2014;114(5):833–844. https://doi.org/10.1161/ CIRCRESAHA.114.302766

38. Kumarswamy R, Lyon AR, Volkmann I, et al. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur Heart J. 2012;33(9):1067– 1075. https://doi.org/10.1093/eurheartj/ehs043

39. Perrino C, Barabási AL, Condorelli G, et al. Epigenomic and transcriptomic approaches in the post-genomic era: Path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res. 2017;113(7):725–736. https://doi.org/10.1093/cvr/cvx070

40. Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail. 2012;14(2):147–154. https://doi.org/10.1093/eurjhf/hfr155

41. Seronde MF, Vausort M, Gayat E, et al. Circulating microRNAs and outcome in patients with acute heart failure. PLoS One. 2015;10(11):е0142237. https://doi.org/10.1371/journal. pone.0142237

42. Lassus J, Gayat E, Mueller C, et al. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: The Multinational Observational Cohort on Acute Heart Failure (MOCA) study. Int J Cardiol. 2013;168(3):2186–2194. https://doi.org/10.1016/j. ijcard.2013.01.228

43. Wong LL, Zou R, Zhou L, et al. Combining Circulating MicroRNA and NT-proBNP to Detect and Categorize Heart Failure Subtypes. J Am Coll Cardiol. 2019;73(11):1300–1313. https://doi. org/10.1016/j.jacc.2018.11.060

44. Stojkovic S, Koller L, Sulzgruber P, et al. Liver-specific microRNA-122 as prognostic biomarker in patients with chronic systolic heart failure. Int J Cardiol. 2020;303:80–85. https://doi. org/10.1016/j.ijcard.2019.11.090

45. Mavrakis KJ, Wolfe AL, Oricchio E, et al. Genomewide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol. 2010;12(4):372–379. https://doi.org/10.1038/ncb2037

46. Gao Y-H, Qian J-Y, Chen Z-W, et al. Suppression of Bim by microRNA-19a may protect cardiomyocytes against hypoxia-induced cell death via autophagy activation. Toxicol Lett. 2016;257:72–83. https://doi.org/10.1016/j.toxlet.2016.05.019

47. Gao F, Kataoka M, Liu N, et al. Therapeutic role of miR19a/19b in cardiac regeneration and protection from myocardial infarction. Nat Commun. 2019;10(1). https://doi.org/10.1038/ s41467-019-09530-1


Рецензия

Для цитирования:


Ишевская О.П., Намитоков А.М., Космачева Е.Д. Биомаркеры сердечной недостаточности: современное состояние вопроса. Инновационная медицина Кубани. 2021;(4):67-72. https://doi.org/10.35401/2500-0268-2021-24-4-67-72

For citation:


Ishevskaia O.P., Namitokov A.M., Kosmacheva E.D. Biomarkers of heart failure: current state of problem. Innovative Medicine of Kuban. 2021;(4):67-72. (In Russ.) https://doi.org/10.35401/2500-0268-2021-24-4-67-72

Просмотров: 67


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0268 (Print)
ISSN 2541-9897 (Online)