Preview

Innovative Medicine of Kuban

Advanced search

The epithelial-to-mesenchymal transition in cancer: pathogenetic features

https://doi.org/10.35401/2541-9897-2022-25-2-85-92

Abstract

The epithelial‑to‑mesenchymal transition (EMT) is a cellular biological process, that occurs in a wide range of cells and tissues and is triggered by complex regulatory networks involving transcriptional control with SNAIL, ZEB1, ZEB2, Twist, SLUG, E‑cadherin, vimentin, tumor microenvironment and genetic characteristics. EMT is represented by the multi‑stage development and transformation of cells of the epithelial phenotype into cells that acquire mesenchymal features of various severity. These quasi‑mesenchymal cells are characterized by stemness, tumor heterogeneity, increasing invasiveness, drug resistance and a tendency to distant metastasis, which leads to the proliferation of neoplastic cells, tumor dissemination and initiation of metastasis, which induces the therapy resistance and the oncological recurrence.

This review is based on the latest scientific publications about the EMT phenomenon, indexed in PubMed. The aim of the study was to evaluate the biochemical and molecular pathogenetic mechanisms of EMT and the effect of EMT markers on the progression of neoplastic processes and the effectiveness of the treatment.

 Nowadays the proper EMT scheme that combines all the molecular transformations of sells with quasi‑mesenchymal phenotype doesn’t exist. But analyzing the features of this cellular program, we can find the proper therapy, that could be able to suppress the plasticity of cancer cells, prevent EMT induction by blocking contextual signals, and induce mesenchymal‑epithelial transition. All these aspects will lead to the reduction of the risk of tumor dissemination and the increase of the effectiveness of cancer treatment.

About the Authors

E. A. Pasechnikova
Kuban State Medical University
Russian Federation

Elizaveta A. Pasechnikova, Postgraduate Student of the Department of Oncology with a Course of Thoracic Surgery, Faculty of Advanced Training and Professional Retraining of Specialists

4, Sedina str., Krasnodar, 350063



V. N. Bodnya
Kuban State Medical University; Scientific Research Institute – Ochapovsky Regional Clinical Hospital no. 1
Russian Federation

Vadim N. Bodnya, Dr. Sci. (Med.), Oncologist; Associate Professor of the Department of Oncology with a Course of Thoracic Surgery, Faculty of Advanced Training and Professional Retraining of Specialists

Krasnodar



D. V. Kadomtsev
Clinical Oncology Dispensary no. 1
Russian Federation

Dmitry V. Kadomtsev, Oncologist

Krasnodar



A. Yu. Georgieva
Kuban State Medical University
Russian Federation

Anastasiya Yu. Georgieva, Postgraduate Student of the Department of Oncology with a Course of Thoracic Surgery, Faculty of Advanced Training and Professional Retraining of Specialists

Krasnodar



V. A. Porhanov
Kuban State Medical University; Scientific Research Institute – Ochapovsky Regional Clinical Hospital no. 1
Russian Federation

Vladimir A. Porhanov, Academician of the Russian Academy of Sciences, Dr. Sci. (Med.), Professor, Chief Doctor; Head of the Department of Oncology with a Course of Thoracic Surgery, Faculty of Advanced Training and Professional Retraining of Specialists

Krasnodar



D. D. Shevchuk
Kuban State Medical University
Russian Federation

Daniil D. Shevchuk, 5th year student

Krasnodar



References

1. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196. PMID: 24556840. PMCID: PMC4240281. https://doi.org/10.1038/nrm3758

2. Nieto MA, Huang RYJ, Jackson RA, et al. EMT: 2016. Cell. 2016;166(1):21–45. PMID: 27368099. https://doi.org/10.1016/j.cell.2016.06.028

3. Van de Putte T, Maruhashi M, Francis A, et al. Mice lacking ZFHX1B, the gene that codes for Smad‑interacting protein‑1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease‑mental retardation syndrome. Am J Hum Genet. 2003;72(2):465–470. PMID: 12522767. PMCID: PMC379238. https://doi.org/10.1086/346092

4. Caja L, Tan E‑J. Epithelium to mesenchyme transition. Encyclopedia of Cancer (Third Edition). 2019:14–23. https://doi.org/10.1016/B978‑0‑12‑801238‑3.65024‑9

5. Sato M, Shames D, Hasegawa Y. miRNAs in Transitions: EMT, MET, and EndoMT. MicroRNA in Regenerative Medicine. 2015:893–915. https://doi.org/10.1016/B978‑0‑12‑405544‑5.00034‑4

6. Ribatti D, Tamma R, Annese T. Epithelial‑Mesenchymal Transition in Cancer: A Historical Overview. Translational oncology. 2020;13(6):100773. PMID: 32334405. PMCID: PMC7182759. https://doi.org/10.1016/j.tranon.2020.100773

7. Williams ED, Gao D, Redfern A, et al. Controversies around epithelial‑mesenchymal plasticity in cancer metastasis. Nature Reviews Cancer. 2019;19(12):716–732. PMID: 31666716. PMCID: PMC7055151. https://doi.org/10.1038/s41568‑019‑0213‑x

8. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670– 691. PMID: 28187288. PMCID: PMC5308465. https://doi.org/10.1016/j.cell.2016.11.037

9. Gotoh O, Sugiyama Y, Takazawa Y, et al. Clinically relevant molecular subtypes and genomic alteration‑independent differentiation in gynecologic carcinosarcoma. Nature communications. 2019;10(1):4965. https://doi.org/10.1038/s41467‑019‑12985‑x

10. Ocaña OH, Córcoles R, Fabra A, et al. Metastatic colonization requires the repression of the epithelial‑mesenchymal transition inducer Prrx1. Cancer Cell. 2012;22(6):709–724. PMID: 23201163. https://doi.org/10.1016/j.ccr.2012.10.012

11. Bornes L, Belthier G, van Rheenen J. Epithelial‑toMesenchymal Transition in the Light of Plasticity and Hybrid E/M States. Journal of clinical medicine. 2021;10(11):2403. PMID: 34072345. PMCID: PMC8197992. http://doi.org/10.3390/jcm10112403

12. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–428. PMID: 1708028. https://doi.org/10.1038/nrc2131

13. Gheldof A, Berx G. Cadherins and epithelial‑to‑mesenchymal transition. Prog Mol Biol Transl Sci. 2013;116:317–336. PMID: 23481201. http://doi.org/10.1016/B978‑0‑12‑394311‑8.00014‑5

14. Petrova YI, Schecterson L, Gumbiner BM. Roles for E‑cadherin cell surface regulation in cancer. Mol Biol Cell. 2016;27(21):3233–3244. PMID: 27582386. PMCID: 5170857. http://doi.org/10.1091/mbc.E16‑01‑0058

15. Wong SHM, Fang CM, Chuah LH, et al. E‑cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 2018;121:11–22. PMID: 29279096. http://doi.org/10.1016/j.critrevonc.2017.11.010

16. Liu CY, Lin HH, Tang MJ, et al. Vimentin contributes to epithelial‑mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget. 2015;6(18):15966–15983. PMID: 25965826. PMCID: PMC4599250. http://doi.org/10.18632/oncotarget.3862

17. Siemens H, Jackstadt R, Hünten S, et al. miR‑34 and SNAIL form a double‑negative feedback loop to regulate epithelial‑mesenchymal transitions. Cell Cycle. 2011;10(24):4256–4271. PMID: 22134354. http://doi.org/10.4161/cc.10.24.18552

18. Watanabe K, Villarreal‑Ponce A, Sun P, et al. Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor. Dev Cell. 2014;29(1):59–74. PMID: 24735879. PMCID: PMC4062651. http://doi.org/10.1016/j.devcel.2014.03.006

19. Shapiro IM, Cheng AW, Flytzanis NC, et al. An EMT‑driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet. 2011;7(8):e1002218. PMID: 21876675. PMCID: PMC3158048. http://doi.org/10.1371/journal.pgen.1002218

20. Warzecha CC, Sato TK, Nabet B, et al. ESRP1 and ESRP2 are epithelial cell‑type‑specific regulators of FGFR2 splicing. Mol Cell. 2009;33(5):591–601. PMID: 19285943. PMCID: PMC2702247. http://doi.org/10.1016/j.molcel.2009.01.025

21. Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125–1134. PMID: 25768908. http://doi.org/10.1016/j.cell.2015.02.014

22. Hong J, Zhou J, Fu J, et al. Phosphorylation of Serine 68 of Twist1 by MAPKs stabilizes Twist1 Protein and Promotes Breast Cancer Cell Invasiveness. Cancer Res. 2011;71(11):3980– 3990. PMID: 21502402. PMID: PMC3107354. http://doi.org/10.1158/0008‑5472.CAN‑10‑2914

23. Xu J, Lamouille S, Derynck R. TGF‑beta‑induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156–172. PMID: 19153598. PMCID: PMC4720263. http://doi.org/10.1038/cr.2009.5

24. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–1437. PMID: 24202395. PMCID: PMC 3954707. http://doi.org/10.1038/nm.3394

25. Puram SV, Tirosh I, Parikh AS, et al. Single‑Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell. 2017;171(7):1611– 1624.e24. PMID: 29198524. PMCID: PMC5878932. http://doi.org/10.1016/j.cell.2017.10.044

26. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14(10):611–629. PMID: 28397828. PMCID: PMC: 5720366. http://doi.org/10.1038/nrclinonc.2017.44

27. Long H, Xiang T, Qi W, et al. CD133+ ovarian cancer stem‑like cells promote non‑stem cancer cell metastasis via CCL5 induced epithelial‑mesenchymal transition. Oncotarget. 2015;6(8):5846–5859. PMID: 25788271. PMCID: PMC4467406. http://doi.org/10.18632/oncotarget.3462

28. Bierie B, Pierce SE, Kroeger C, et al. Integrin‑β4 identifies cancer stem cell‑enriched populations of partially mesenchymal carcinoma cells. Proc Natl Acad Sci U S A. 2017;114(12):E2337–E2346. http://doi.org/10.1073/pnas.1618298114

29. Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006;6(6):449–458. PMID: 16723991. http://doi.org/10.1038/nrc1886

30. Krebs AM, Mitschke J, Lasierra Losada M, et al. The EMTactivator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol. 2017;19(5):518–529. PMID: 28414315. http://doi.org/10.1038/ncb3513

31. Aceto N, Bardia A, Miyamoto DT, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158(5):1110–1122. PMID: 25171411. PMCID: PMC4149753. http://doi.org/10.1016/j.cell.2014.07.013

32. Revenu C, Gilmour D. EMT 2.0: shaping epithelia through collective migration. Curr Opin Genet Dev. 2009;19(4):338–342. PMID: 19464162. http://doi.org/10.1016/j.gde.2009.04.007

33. Tsai JH, Donaher JL, Murphy DA, et al. Spatiotemporal regulation of epithelial‑mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012;22(6):725– 736. PMID: 23201165. PMCID: PMC3522773. http://doi.org/10.1016/j.ccr.2012.09.022

34. Braun S, Vogl FD, Naume B, et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 2005;353(8):793–802. PMID: 16120859. http://doi.org/10.1056/NEJMoa050434

35. Klein CA. Selection and adaptation during metastatic cancer progression. Nature. 2013;501(7467):365–372. PMID: 24048069. http://doi.org/10.1038/nature12628

36. Dagogo‑Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94. PMID: 29115304. http://doi.org/10.1038/nrclinonc.2017.166

37. Koren S, Reavie L, Couto JP, et al. PIK3CA(H1047R) induces multipotency and multi‑lineage mammary tumours. Nature. 2015;525(7567):114–118. PMID: 26266975. http://doi.org/10.1038/nature14669

38. Pastushenko I, Brisebarre A, Sifrim A, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556(7702):463–468. PMID: 29670281. http://doi.org/10.1038/s41586‑018‑0040‑3

39. Thiery JP, Acloque H, Huang RY, et al. Epithelialmesenchymal transitions in development and disease. Cell. 2009;139(5):871–890. PMID: 19945376. http://doi.org/10.1016/j.cell.2009.11.007

40. Saxena M, Stephens MA, Pathak H, et al. Transcription factors that mediate epithelial‑mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis. 2011;2(7):e179. PMID: 21734725. PMCID: PMC3199722. http://doi.org/10.1038/cddis.2011.61

41. Byers LA, Diao L, Wang J, et al. An epithelial‑mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res. 2013;19(1):279–290. PMID: 23091115. PMCID: PMC3567921. http://doi.org/10.1158/1078‑0432.CCR‑12‑1558

42. Hata AN, Niederst MJ, Archibald HL, et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med. 2016;22(3):262–269. PMID: 26828195. PMCID: PMC4900892. http://doi.org/10.1038/nm.4040

43. Terry S, Savagner P, Ortiz‑Cuaran S, et al. New insights into the role of EMT in tumor immune escape. Mol Oncol. 2017;11(7):824–846. PMID: 28614624. PMCID: PMC5496499. http://doi.org/10.1002/1878‑0261.12093

44. Dongre A, Rashidian M, Reinhardt F, et al. Epithelial‑toMesenchymal Transition Contributes to Immunosuppression in Breast Carcinomas. Cancer Res. 2017;77(15):3982–3989. PMID: 28428275. PMCID: PMC5541771. http://doi.org/10.1158/0008‑5472.CAN‑16‑3292

45. Noman MZ, Janji B, Abdou A, et al. The immune checkpoint ligand PD‑L1 is upregulated in EMT‑activated human breast cancer cells by a mechanism involving ZEB‑1 and miR‑200. Oncoimmunology. 2017;6(1):e1263412. PMID: 28197390. PMCID: PMC5283623. http://doi.org/10.1080/216240 2X.2016.1263412

46. Kudo‑Saito C, Shirako H, Takeuchi T, et al. Cancer metastasis is accelerated through immunosuppression during Snailinduced EMT of cancer cells. Cancer Cell. 2009;15(3):195–206. PMID: 19249678. http://doi.org/10.1016/j.ccr.2009.01.023

47. Byers LA, Gerber D, Peguero J, et al. A phase I/II and pharmacokinetic study of BGB324, a selective AXL inhibitor as monotherapy and in combination with erlotinib in patients with advanced non‑small cell lung cancer (NSCLC). Eur J Cancer. 2016;69(1):S18–S19. http://doi.org/10.1016/S0959‑8049(16)32636‑3

48. Pattabiraman DR, Bierie B, Kober KI, et al. Activation of PKA leads to mesenchymal‑to‑epithelial transition and loss of tumor‑initiating ability. Science. 2016;351(6277):aad3680. PMID: 26941323. PMCID: PMC5131720. http://doi.org/10.1126/science.aad3680

49. Herbertz S, Sawyer JS, Stauber AJ, et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor‑beta signaling pathway. Drug Des Devel Ther. 2015;9:4479–4499. PMID: 26309397. PMCID: PMC4539082. https://doi.org/10.2147/DDDT.S86621


Review

For citations:


Pasechnikova E.A., Bodnya V.N., Kadomtsev D.V., Georgieva A.Yu., Porhanov V.A., Shevchuk D.D. The epithelial-to-mesenchymal transition in cancer: pathogenetic features. Innovative Medicine of Kuban. 2022;(2):85-92. (In Russ.) https://doi.org/10.35401/2541-9897-2022-25-2-85-92

Views: 551


ISSN 2541-9897 (Online)