Preview

Innovative Medicine of Kuban

Advanced search

Metabolic influence on circadian oscillations рH and Eh in urine and saliva

https://doi.org/10.35401/2541-9897-2022-25-4-82-89

Abstract

Urine and saliva are the most accessible liquids for studying circadian oscillations coherent with the activity of ongoing metabolic processes, which are characterized by a change in the rate and direction of the formation of protons (H+) and electrons (ē). The existing balance of acid-base state (pH) and redox potential (Eh) is an important indicator of homeostasis, reflecting the state of energy metabolism, i.e., the process of dissimilation. If the stability of the main (basic) metabolism does not change during the day, then the rate of facultative energy-consuming processes increases significantly during the daytime and decreases at night.
Endogenous formation of hydrogen cations (H+) accompanies all transformation reactions of adenosine triphosphate. Thus, glycolysis is accompanied by lactic acidosis of the cytoplasm, and the tricarboxylic acid cycle performs a hydrogen-donor function, supplying protons (H+) to the respiratory chain of mitochondria. At the same time, depending on the rate of oxidative phosphorylation, a certain part of hydrogen cations (H+) is excreted into the intercellular space, from where it subsequently enters saliva and urine.
Daily oscillations of pH and Eh in the urine and oral fluid (saliva) of healthy people reflect the circadian rhythm of metabolic processes and can be important indicators of metabolic disorders in common diseases accompanied by impaired energy metabolism.

About the Authors

A. S. Tatevosyan
Kuban State Medical University 
Russian Federation

 Arthur S. Tatevosyan, Dr. Sci. (Med.), Professor, Department of Urology

 4, M. Sedina str., Krasnodar, 350063 



I. M. Bykov
Kuban State Medical University 
Russian Federation

 Ilya M. Bykov, Dr. Sci. (Med.), Professor, Head of the Department of Basic and Clinical Biochemistry 

4, M. Sedina str., Krasnodar, 350063 



D. A. Gubareva
Kuban State Medical University 
Russian Federation

 Diana A. Gubareva, Assistant of the Department of Disease Prevention, Healthy Lifestyle and Epidemiology 

4, M. Sedina str., Krasnodar, 350063 



References

1. Schmitt EE, Johnson EK, Yusifova M, et al. The renal molecular clock: broken by aging and restored by exercise. Am J Physiol Renal Physiol. 2019;317(5):F1087–F1093. PMID: 31461350. PMCID: PMC6879930. https://doi.org/10.1152/ajprenal.00301.2019

2. Chacko BK, Kramer PA, Ravi S, et al. Bioenergetic health index: a new concept in mitochondrial translational research. Clin Sci (Lond). 2014;127:367–373. PMID: 24895057. PMCID: PMC4202728. https://doi.org/10.1042/cs20140101

3. Brunner M, Schafmeier T. Transcriptional and post-transcriptional regulation of the circadian clock in cyanobacteria and neurospora. Gene Dev. 2006;20(9):1061–1074. PMID: 16651653. https://doi.org/10.1101/gad.1410406

4. Harmer SL. The circadian system in higher plants. Annual Review of Plant Biology. 2009;60:357–377. PMID: 19575587. https://doi.org/10.1146/annurev.arplant.043008.092054

5. Rosato E, Tauber E, Kyriacou CP. Molecular genetics of the fruit fly circadian clock. Eur J Hum Genet. 2006;14(6):729–738. PMID: 16721409. https://doi.org/10.1038/sj.ejhg.5201547

6. Mehra A, Baker SL, Loros JJ, et al. Post-translational modifications of circadian rhythms. Trends in biochemical sciences. 2009;34:483–490. PMID: 19740663. PMCID: PMC2765057. https://doi.org/10.1016/j.tibs.2009.06.006

7. Cermakian N, Boivin DB. The regulation of central and peripheral circadian clocks in humans. Obes Rev. 2009;10(2):25–36. PMID: 19849799. https://doi.org/10.1111/j.1467-789x.2009.00660.x

8. Firsov D, Bonnie O. Circadian regulation of renal function. Kidney Int. 2010;78(7):640–645. PMID: 20664559. https://doi.org/10.1038/ki.2010.227

9. Rosenfeld L. Henry Bence Jones (1813–1873): the best “chemical doctor” in London. Clinic Chem. 1987;33:1687–1692. PMID: 3304718.

10. Moore-Ede MC. Physiology of the circadian timing system: predictive versus reactive homeostasis. Am J Physiol. 1986;250:R737–752. PMID: 3706563. https://doi.org/10.1152/ajpregu.1986.250.5.r737

11. Ayres JW, Weidler DJ, MacKichan J, et al. Circadian rhythm of urinary pH in man with and without chronic antacid administration. Eur J Clinic Pharmacol. 1977;12:415–420. PMID: 23296. https://doi.org/10.1007/bf00561060

12. Kanabrocki EL, Snedeker PW, Zieher SJ, et al. Circadian characteristics of dialyzable and non-dialyzable human urinary electrolytes, trace elements and total solids. Chronobiol Int. 1988;5:175–184. PMID: 3401983. https://doi.org/10.3109/07420528809079558

13. Niv Y. Pentagastrin-induced alkaline flushing of urine is a recurring phenomenon that resolves after vagotomy. Israel Journal of Medical Sciences. 1992;28:97–98.

14. Pizzorno J. Acidosis: An Old Idea Validated by New Research. Integr Med (Encinitas). 2015;14(1):8–12. PMID: 26770125. PMCID: PMC4566456.

15. Cameron M, Maalouf NM, Poindexter J, et al. The diurnal variation in urine acidification differs between normal individuals and uric acid stone formers. Kidney Int. 2012;81(11):1123–1130. PMID: 22297671. PMCID: PMC3352978. https://doi.org/10.1038/ki.2011.480

16. Suter DM, Schibler U. Physiology. Feeding the clock. Science. 2009;326(5951):378–379. PMID: 19833950. https://doi.org/10.1126/science.1181278

17. Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177–185. PMID: 28179656. https://doi.org/10.1038/nature21363

18. Gamble KL, Young ME. Metabolism as an integral cog in the mammalian circadian clockwork. Crit Rev Biochem Mol Biol. 2013;48(4):317–331. PMID: 23594144. PMCID: PMC3862897. https://doi.org/10.3109/10409238.2013.786672

19. Aguilar-López BA, Moreno-Altamirano MMB, Dockrell HM, et al. Mitochondria: An Integrative Hub Coordinating Circadian Rhythms, Metabolism, the Microbiome, and Immunity. Front Cell Dev Biol. 2020;8:51. PMID: 32117978. PMCID: PMC7025554. https://doi.org/10.3389/fcell.2020.00051

20. Schmitt K, Grimm A, Dallmann R, et al. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metabolism; 2018;27(3):657–666. PMID: 29478834. https://doi.org/10.1016/j.cmet.2018.01.011

21. Dennis SC, Gevers W, Opie LH. Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol. 1991;23(9):1077–1186. PMID: 1658348. https://doi.org/10.1016/0022-2828(91)91642-5

22. Gillies R, Pilot C, Marunaka Y, et al. Targeting acidity in cancer and diabetes. Biochim Biophys Acta Rev Cancer. 2019;1871(2):273–280. PMID: 30708040. PMCID: PMC6525044. https://doi.org/10.1016/j.bbcan.2019.01.003

23. Forney LG, McKinnon W, Lord GA, et al. Circulating anions commonly associated with the Krebs cycle in patients with metabolic acidosis. Crit Care. 2005;9(5):R591–595. https://doi.org/10.1186/cc3806

24. Marunaka Y. The proposal of molecular mechanisms of weak organic acids intake-induced improvement of insulin resistance in diabetes mellitus via elevation of interstitial fluid pH. Int J Mol Sci. 2018;19(10):3244. PMID: 30347717. PMCID: PMC6214001. https://doi.org/10.3390/ijms19103244

25. Reinke H, Asher G. Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol. 2019;20(4):227–241. PMID: 30635659. https://doi.org/10.1038/s41580-018-0096-9

26. Scrima R, Cela O, Merla G, et al. Clock-genes and mitochondrial respiratory activity: evidence of a reciprocal interplay. Biochim Biophys Acta. 2016;1857(8):1344–1351. PMID: 27060253. https://doi.org/10.1016/j.bbabio.2016.03.035

27. de Goede P, Wefers J, Brombacher EC, et al. Circadian rhythms in mitochondrial respiration. J Mol Endocrinol. 2018;60(3):R115–R130. PMID: 29378772. PMCID: PMC5854864. https://doi.org/10.1530/jme-17-0196

28. Ezagouri S, Asher G. Circadian control of mitochondrial dynamics and functions. Current Opinion in Physiology. 2018;5:25–29. https://doi.org/10.1016/j.cophys.2018.05.008

29. Berend K. Review of the diagnostic evaluation of normal anion gap metabolic acidosis. Kidney Dis (Basel). 2017;3(4):149–159. PMID: 29344509. PMCID:PMC5757610. https://doi.org/10.1159/000479279

30. Mezhnina V, Ebigbe OP, Po A, et al. Circadian control of mitochondria in reactive oxygen species homeostasis. Antioxid Redox Signal. 2022. PMID: 35072523. https://doi.org/10.1089/ars.2021.0274

31. Manoogian ENC, Satchidananda P. Circadian clock, nutrient quality, and eating pattern tune diurnal rhythms in the mitochondrial proteome. Proceedings of the National Academy of Sciences. 2016;113(12);3127–3129. https://doi.org/10.1073/pnas.1601786113

32. Cupisti A, D’Alessandro C. Metabolic and dietary features in kidney stone formers: nutritional approach. J Bras Nefrol. 2020;42(3):271–272. PMID: 32495817. PMCID: PMC7657041. https://doi.org/10.1590/2175-8239-jbn-2020-0061

33. Oparin A., Fesenkov V. Life in the Universe. M.: Publishing House of the USSR Academy of Science, 3rd edition, 1956, 228 p.


Review

For citations:


Tatevosyan A.S., Bykov I.M., Gubareva D.A. Metabolic influence on circadian oscillations рH and Eh in urine and saliva. Innovative Medicine of Kuban. 2022;(4):82-89. (In Russ.) https://doi.org/10.35401/2541-9897-2022-25-4-82-89

Views: 401


ISSN 2541-9897 (Online)