Preview

Innovative Medicine of Kuban

Advanced search

Development of the Acellular Dermal Matrix and Experimental Substantiation of Its Use in the Anterior Abdominal Wall hernia Repair

https://doi.org/10.35401/2541-9897-2023-26-3-71-79

Abstract

   Objective: To develop a biological implant that is an acellular dermal matrix (ADM), evaluate its use as a support material in tensionfree hernioplasty for ventral hernia, and compare it to that of the commercially available implant PermacolTM.

   Materials and methods: ADM was derived from the porcine dermis (Landrace breed) decellularized using detergents and enzymes. The quality of devitalization was assessed in vitro. We performed sublay hernioplasty in 4-month-old Landrace pigs using ADM (experimental group) and PermacolTM (control group). The specimens were explanted on day 120 of the experiment for histological and immunohistochemical examination.

   Results: All cellular elements were removed by the detergent-enzymatic treatment of the dermis; the native architecture of the dermis was slightly disrupted. The specimens of the commercially available chemically cross-linked biomaterial PermacolTM had better mechanical properties than ADM specimens; however, there were no significant differences in terms of cytotoxicity. The state of the tissues after the explantation (number of fibroblasts and endothelial cells) showed no differences in the result of using ADM and PermacolTM. In 120 days, the materials integrated into the tissues without the formation of adhesions or inflammation.

   Conclusions: Our findings show that ADM does not have cytotoxic properties, has adequate biomechanical parameters to effectively reinforce supporting soft tissues, does not cause an inflammatory response during implantation, and integrates fully into tissues. Our study demonstrates the effectiveness and utility of the developed ADM in surgical treatment of anterior abdominal wall defects.

About the Authors

K. I. Melkonian
Kuban State Medical University
Russian Federation

Karina I. Melkonian, Cand. Sci. (Med.), Associate Professor, Head of the Laboratory

Central Research Laboratory

350063

ulitsa M. Sedina 4

Krasnodar



T. V. Rusinova
Kuban State Medical University
Russian Federation

Tatyana V. Rusinova, Cand. Sci. (Bio.), Researcher

Central Research Laboratory

Krasnodar



A. S. Asyakina
Kuban State Medical University
Russian Federation

Alevtina S. Asyakina, Junior Researcher

Central Research Laboratory

Krasnodar



E. A. Solop
Kuban State Medical University
Russian Federation

Elizaveta A. Solop, Laboratory Research Technician

Central Research Laboratory

Krasnodar



A. A. Fomenco
Kuban State Medical University
Russian Federation

Alexandra A. Fomenco, Laboratory Research Technician

Central Research Laboratory

Krasnodar



G. P. Chuprynin
Kuban State Medical University
Russian Federation

Gleb P. Chuprynin, Laboratory Research Technician

Central Research Laboratory

Krasnodar



References

1. Gumenyuk SE, Gubish AV, Popov AYu, et al. Long-term results of various treatment options for ventral hernias. Kubanskij nauchnyj medicinskij vestnik. 2017;1(2):61–65. (In Russ.). doi: 10.25207/1608-6228-2017-2-61-65

2. Milburn ML, Holton LH, Chung TL, et al. Acellular dermal matrix compared with synthetic implant material for repair of ventral hernia in the setting of peri-operative Staphylococcus aureus implant contamination: a rabbit model. Surg Infect (Larchmt). 2008;9(4):433–442. PMID: 18759680. doi: 10.1089/sur.2007.044

3. Novitsky YW, Orenstein SB, Kreutzer DL. Comparative analysis of histopathologic responses to implanted porcine biologic meshes. Hernia. 2014;18(5):713–721. PMID: 24370604. doi: 10.1007/s10029-013-1203-7

4. Vinnik YuS, Markelova NM, Miller SV, et al. The first results of application of novel biopolymers in surgery and medicine and their potentials. Journal of Siberian Federal University. Biology. 2012;5(4):387–403. (In Russ.).

5. Wang See C, Kim T, Zhu D. Hernia mesh and hernia repair: a review. Engineered Regeneration. 2020;1:19–33. doi: 10.1016/j.engreg.2020.05.002

6. Isaeva EV, Beketov EE, Arguchinskaja NV, Ivanov SА, Shegay PV, Kaprin АD. Decellularized extracellular matrix for tissue engineering (review). Sovrem Tekhnologii Med. 2022;14(3):57–69. (In Russ.). PMID: 37064810. PMCID: PMC10090917. doi: 10.17691/stm2022.14.3.07

7. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioact Mater. 2021;10:15–31. PMID: 34901526. PMCID: PMC8637010. doi: 10.1016/j.bioactmat.2021.09.014

8. Kaufmann R, Jairam AP, Mulder IM, et al. Non-cross-linked collagen mesh performs best in a physiologic, noncontaminated rat model. Surg Innov. 2019;26(3):302–311. PMID: 30834819. PMCID: PMC6535808. doi: 10.1177/1553350619833291

9. de Castro Brás LE, Shurey S, Sibbons PD. Evaluation of crosslinked and non-crosslinked biologic prostheses for abdominal hernia repair. Hernia. 2012;16(1):77–89. PMID: 21805341. PMCID: PMC3266498. doi: 10.1007/s10029-011-0859-0

10. Cheng AW, Abbas MA, Tejirian T. Outcome of abdominal wall hernia repair with biologic mesh: Permacol™ versus Strattice™. Am Surg. 2014;80(10):999–1002. PMID: 25264647.

11. Cavallo JA, Greco SC, Liu J, Frisella MM, Deeken CR, Matthews BD. Remodeling characteristics and biomechanical properties of a crosslinked versus a non-crosslinked porcine dermis scaffolds in a porcine model of ventral hernia repair. Hernia. 2015;19(2):207–218. PMID: 23483265. PMCID: PMC3883946. doi: 10.1007/s10029-013-1070-2

12. Bühler NE, Schulze-Osthoff K, Königsrainer A, Schenk M. Controlled processing of a fullized porcine liver to a decellularized matrix in 24 h. J Biosci Bioeng. 2015;119(5):609–613. PMID: 25468420. doi: 10.1016/j.jbiosc.2014.10.019

13. Reing JE, Brown BN, Daly KA, et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 2010;31(33):8626–8633. PMID: 20728934. PMCID: PMC2956268. doi: 10.1016/j.biomaterials.2010.07.083

14. Bottino MC, Thomas V, Jose MV, Dean DR, Janowski GM. Acellular dermal matrix graft: synergistic effect of rehydration and natural crosslinking on mechanical properties. J Biomed Mater Res B Appl Biomater. 2010;95(2):276–282. PMID: 20842698. doi: 10.1002/jbm.b.31711

15. Mulier KE, Nguyen AH, Delaney JP, Marquez S. Comparison of Permacol™ and Strattice™ for the repair of abdominal wall defects. Hernia. 2011;15(3):315–319. PMID: 21234626. doi: 10.1007/s10029-010-0777-6

16. Chen Y, Dan N, Wang L, Liu X, Dan W. Study on the cross-linking effect of a natural derived oxidized chitosan oligosaccharide on the porcine acellular dermal matrix. RSC Advances. 2016;6(44):38052–38063. doi: 10.1039/C6RA03434A

17. Melman L, Jenkins ED, Hamilton NA, et al. Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair. Hernia. 2011;15(2):157–164. PMID: 21222009. PMCID: PMC3783088. doi: 10.1007/s10029-010-0770-0


Review

For citations:


Melkonian K.I., Rusinova T.V., Asyakina A.S., Solop E.A., Fomenco A.A., Chuprynin G.P. Development of the Acellular Dermal Matrix and Experimental Substantiation of Its Use in the Anterior Abdominal Wall hernia Repair. Innovative Medicine of Kuban. 2023;(3):71-79. (In Russ.) https://doi.org/10.35401/2541-9897-2023-26-3-71-79

Views: 474


ISSN 2541-9897 (Online)