Hernia or hernia Defect? Experimental herniology Models in Laboratory Animals
https://doi.org/10.35401/2541-9897-2023-26-3-114-120
Abstract
Hernias of the anterior abdominal wall remain one of the most common surgery pathologies. There is no unified approach to modeling anterior abdominal wall hernias in the world scientific community. In order to systematize the available knowledge in this field and to contribute to the formation of a unified idea of how to create a hernia model in a laboratory animal, it seems logical to study the accumulated experience of researchers in the field of experimental herniology. We found out that hernia defects generally modeled on male laboratory rats. To understand the tissue reaction to the prosthetic material a fenestration was performed in the anterior abdominal wall (including peritoneum) except for the skin and subcutaneous fat. A replacement or prosthetic material tailored to the fenestration was sutured end-to-end into the abdominal wall. We chose laboratory rats because they are easy to take care of and cheaper than larger laboratory animals.
About the Authors
V. A. LazarenkoRussian Federation
Viktor A. Lazarenko, Dr. Sci. (Med.), Professor, Rector
Kursk
I. S. Ivanov
Russian Federation
Ilia S. Ivanov, Dr. Sci. (Med.), Professor, Head of the Department
Surgical Diseases Department No. 1
Kursk
A. A. Ushanov
Russian Federation
Alexander A. Ushanov, Postgraduate Student
305041
ulitsa K. Marksa 3
Kursk
E. S. Mishina
Russian Federation
Ekaterina S. Mishina, Cand. Sci. (Med.), Associate Professor
Department of Histology, Embryology and Cytology
Kursk
E. G. Obedkov
Russian Federation
Evgenij G. Obedkov, Cand. Sci. (Med.), Assistant Professor
Surgical Diseases Department No. 1
Kursk
V. S. Kostin
Russian Federation
Viktor S. Kostin, 5th Year Student
Kursk
References
1. Kirienko AI, Nikishkov AS, Seliverstov EI, Andriyashkin AV. Epidemiology of abdominal wall hernias. Endoskopicheskaya Khirurgiya. 2016;22(4):55-60. (In Russ.). doi: 10.17116/endoskop201622455-60
2. Helgstrand F. National results after ventral hernia repair. Dan Med J. 2016;63(7):B5258. PMID: 27399983.
3. Vinnik YuS, Chaikin AA, Nazaryans YuA, Petrushko SI. Contemporary view on the problem of treatment the patients with post-operative ventral hernias. Siberian Medical Review. 2014;(6):5–13. (In Russ.).
4. Lazarenko VA, Ivanov SV, Ivanov IS, et al. Skin biopsy as a method for determining indications for preventive endoprosthetics of the anterior abdominal wall. Kursk Scientific and Practical Bulletin “Man and His Health”. 2020;(4):46–53. (In Russ.). doi: 10.21626/vestnik/2020-4/06
5. Hympanova L, Mori da Cunha MGMC, Rynkevic R, et al. Experimental reconstruction of an abdominal wall defect with electrospun polycaprolactone-ureidopyrimidinone mesh conserves compliance yet may have insufficient strength. J Mech Behav Biomed Mater. 2018;88:431–441. PMID: 30216933. doi: 10.1016/j.jmbbm.2018.08.026
6. Vogels RRM, Kaufmann R, van den Hil LCL, et al. Critical overview of all available animal models for abdominal wall hernia research. Hernia. 2017;21(5):667–675. PMID: 28466188. PMCID: PMC5608772. doi: 10.1007/s10029-017-1605-z
7. Golovneva ES, Nikolenko ES, Revel-Muroz JA. Features of response reactions of some cell populations of connective tissue and collagen formation in a rat model with postoperative ventral hernia after laser irradiation on red bone marrow. Laser Medicine. 2019;23(3):45–49. (In Russ.).
8. Norov FX. Results of an experimental developed improved approach to the treatment of ventral hernias. Galaxy International Interdisciplinary Research Journal. 2022;10(8):169–176.
9. Ismailov GM, Magomedov MM, Magomedov AA. Modeling of ventral hernia and its experimental results. Medicus. 2022;(3):55–59. (In Russ.).
10. Yang S, Chen J, Shen Y, Wang M, Zou Z, Jin C. Establishment of a rabbit model of giant abdominal wall hernia. Surg Innov. 2019;26(3):376–380. PMID: 30472927. doi: 10.1177/1553350618814090
11. Pascual G, Rodríguez M, Pérez-Köhler B, et al. Long term comparative evaluation of two types of absorbable meshes in partial abdominal wall defects: an experimental study in rabbits. Hernia. 2020;24(6):1159–1173. PMID: 32388587. doi: 10.1007/s10029-020-02201-x
12. Terazawa T, Furukoshi M, Nakayama Y. One-year follow-up study of iBTA-induced allogenic biosheet for repair of abdominal wall defects in a beagle model: a pilot study. Hernia. 2019;23(1):149–155. PMID: 30506241. doi: 10.1007/s10029-018-1866-1
13. Overbeck N, Nagvajara GM, Ferzoco S, May BCH, Beierschmitt A, Qi S. In-vivo evaluation of a reinforced ovine biologic: a comparative study to available hernia mesh repair materials. Hernia. 2020;24(6):1293–1306. PMID: 32006122. PMCID: PMC7701079. doi: 10.1007/s10029-019-02119-z
14. Aramayo AL, Lopes Filho Gde J, Barbosa Cde A, Amaral Vda F, Costa LA. Abdominal wall healing in incisional hernia using different biomaterials in rabbits. Acta Cir Bras. 2013; 28(4):307–316. PMID: 23568239. doi: 10.1590/s0102-86502013000400011
15. East B, Plencner M, Otahal M, Amler E, de Beaux AC. Dynamic creep properties of a novel nanofiber hernia mesh in abdominal wall repair. Hernia. 2019;23(5):1009–1015. PMID: 30953212. doi: 10.1007/s10029-019-01940-w
16. Heise D, Eickhoff R, Kroh A, et al. Elastic TPU mesh as abdominal wall inlay significantly reduces defect size in a minipig model. J Invest Surg. 2019;32(6):501–506. PMID: 29469618. doi: 10.1080/08941939.2018.1436207
17. Chan JC, Burugapalli K, Huang YS, Kelly JL, Pandit A. A clinically relevant in vivo model for the assessment of scaffold efficacy in abdominal wall reconstruction. J Tissue Eng. 2016;8:2041731416686532. PMID: 28228932. PMCID: PMC5308531. doi: 10.1177/2041731416686532
18. Guyton AC. Measurement of the respiratory volumes of laboratory animals. Am J Physiol. 1947;150(1):70–77. PMID: 20252828. doi: 10.1152/ajplegacy.1947.150.1.70
19. Hackam DG, Redelmeier DA. Translation of research evidence from animals to humans. JAMA. 2006;296(14):1731–1732. PMID: 17032985. doi: 10.1001/jama.296.14.1731
20. Schreinemacher M, Henatsch D, van Barneveld K, Bouvy N. The need for standardised animal models and scoring systems in assessing mesh biocompatibility. Hernia. 2010;14(3):335–336. PMID: 20191394. PMCID: PMC2878450. doi: 10.1007/s10029-010-0642-7
21. Turner PV, Brabb T, Pekow C, Vasbinder MA. Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci. 2011;50(5):600–613. PMID: 22330705. PMCID: PMC3189662.
22. Wolfensohn S, Lloyd M. Handbook of Laboratory Animal Management and Welfare. John Wiley & Sons; 2013.
23. Galef BG Jr. Imitation in animals: history, definition, and interpretation of data from the psychological laboratory. In: Zentall TR, Galef BG Jr, eds. Social Learning. Psychology Press; 2013:15–40.
24. Anastasio AT, Van Eps JL, Fernandez-Moure JS. Surgical technique for development of a clinically-representative ventral hernia repair infection rat model. MethodsX. 2020;7:100887. PMID: 32426245. PMCID: PMC7225390. doi: 10.1016/j.mex.2020.100887
25. Qiu W, Zhong C, Xu R, et al. Novel large-pore lightweight polypropylene mesh has better biocompatibility for rat model of hernia. J Biomed Mater Res A. 2018;106(5):1269–1275. PMID: 29314586. doi: 10.1002/jbm.a.36326
26. Cornwell KG, Zhang F, Lineaweaver W. Bovine fetal collagen reinforcement in a small animal model of hernia with component repair. J Surg Res. 2016;201(2):416–424. PMID: 27020827. doi: 10.1016/j.jss.2015.10.049
27. Dudzinski AN. New method of abdominal wall surgery in case of incisional hernia: comparative experimental research. Journal of the Grodno State Medical University. 2022;20(5):531–536. (In Russ.). doi: 10.25298/2221-8785-2022-20-5-531-536
28. Suckow MA, Duke Boynton FD, Johnson C. Use of a rat model to study ventral abdominal hernia repair. J Vis Exp. 2017;(128):53587. PMID: 28994802. PMCID: PMC5752351. doi: 10.3791/53587
29. Fatkhudinov T, Tsedik L, Arutyunyan I, et al. Evaluation of resorbable polydioxanone and polyglycolic acid meshes in a rat model of ventral hernia repair. J Biomed Mater Res B Appl Biomater. 2019;107(3):652–663. PMID: 30091512. PMCID: PMC6585936. doi: 10.1002/jbm.b.34158
30. Burcharth J, Pommergaard HC, Klein M, Rosenberg J. An experimental animal model for abdominal fascia healing after surgery. Eur Surg Res. 2013;51(1–2):33–40. PMID: 23969725. doi: 10.1159/000353970
31. Suzuhigashi M, Kaji T, Nakame K, et al. Abdominal wall regenerative medicine for a large defect using tissue engineering: an experimental study. Pediatr Surg Int. 2016;32(10):959–965. PMID: 27476152. doi: 10.1007/s00383-016-3949-3
32. van Steensel S, van den Hil LCL, Bloemen A, et al. Prevention of incisional hernia using different suture materials for closing the abdominal wall: a comparison of PDS, Vicryl and Prolene in a rat model. Hernia. 2020;24(1):67–78. PMID: 31111322. PMCID: PMC7007910. doi: 10.1007/s10029-019-01941-9
33. Bryan N, Ahswin H, Smart N, Bayon Y, Wohlert S, Hunt JA. The in vivo evaluation of tissue-based biomaterials in a rat full-thickness abdominal wall defect model. J Biomed Mater Res B Appl Biomater. 2014;102(4):709–720. PMID: 24155173. doi: 10.1002/jbm.b.33050
34. Chatzimavroudis G, Kalaitzis S, Voloudakis N, et al. Evaluation of four mesh fixation methods in an experimental model of ventral hernia repair. J Surg Res. 2017;212:253–259. PMID: 28550915. doi: 10.1016/j.jss.2017.01.013
35. Lyons M, Mohan H, Winter DC, Simms CK. Biomechanical abdominal wall model applied to hernia repair. Br J Surg. 2015;102(2):e133–e139. PMID: 25627126. doi: 10.1002/bjs.9687
36. Simón-Allué R, Montiel JM, Bellón JM, Calvo B. Developing a new methodology to characterize in vivo the passive mechanical behavior of abdominal wall on an animal model. J Mech Behav Biomed Mater. 2015;51:40–49. PMID: 26209832. doi: 10.1016/j.jmbbm.2015.06.029
Review
For citations:
Lazarenko V.A., Ivanov I.S., Ushanov A.A., Mishina E.S., Obedkov E.G., Kostin V.S. Hernia or hernia Defect? Experimental herniology Models in Laboratory Animals. Innovative Medicine of Kuban. 2023;(3):114-120. (In Russ.) https://doi.org/10.35401/2541-9897-2023-26-3-114-120