Comparison of Cardioprotective Effects of Dapagliflozin and Trimetazidine in the Model of Doxorubicin-Cyclophosphamide Cardiotoxicity
https://doi.org/10.35401/2541-9897-2023-8-4-6-14
Abstract
Background: Data published by task groups of the Ministry of Health of the Russian Federation, the European Society of Cardiology, and other medical associations and institutions show that chemotherapy-induced cardiomyopathy is still a challenging issue that requires further research.
Objective: To compare the cardioprotective potential of trimetazidine and dapagliflozin in a rat model of doxorubicin-cyclophospha-mide cardiomyopathy.
Materials and methods: Our randomized in vivo experimental study included 80 Wistar female rats. Doxorubicin and cyclophosphamide were administered at a dose of 15 mg/kg and 150 mg/kg, respectively. Trimetazidine (42 mg/kg) and dapagliflozin (14 mg/kg) were additionally administered to groups 3 and 4, respectively. The total duration of the experiment was 14 days.
Results: Doxorubicin+cyclophosphamide mode of chemotherapy induces the development of toxic-ischemic cardiomyopathy. The trimetazidine and dapagliflozin administration was accompanied by stabilization of cardiovascular parameters. Comparison of both drugs’ cardioprotective properties revealed a clear advantage of dapagliflozin over trimetazidine, especially in terms of such an important indicator as N-terminal pro-B-type natriuretic peptide.
Conclusions: Further research aimed at exploring the cardioprotective potential of dapagliflozin against cardiovascular complications of chemotherapy is justified from a pathogenetic point of view.
About the Authors
A. A. AvagimyanArmenia
Ashot A. Avagimyan, Cand. Sci. (Med.), Assistant Professor at the Department of Pathological Anatomy and Clinical Morphology
Yerevan
A. I. Trofimenko
Russian Federation
Artem I. Trofimenko, Cand. Sci. (Med.), Associate Professor at the Pathological Physiology Department
Krasnodar
M. Sheibani
Islamic Republic of Iran
Mohammad Sheibani, PhD, Assistant Professor at the Department of Pharmacology, School of Medicine
Tehran
L. V. Kakturskiy
Russian Federation
Lev V. Kakturskiy, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Scientific Director of the Research Institute of Human Morphology named after Academician A.P. Avtsyn
Moscow
O. I. Urazova
Russian Federation
Olga I. Urazova, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Pathophysiology Department
Tomsk
G. A. Navasardyan
Armenia
Grizelda A. Navasardyan, Cand. Sci. (Med.), Professor at the Department of Pathophysiology
Yerevan
Z. T. Jndoyan
Armenia
Zinaida T. Jndoyan, Dr. Sci. (Med.), Professor, Head of the Internal Disease Propedeutics Department
Yerevan
N. V. Sulashvili
Georgia
Nodar V. Sulashvili, PhD, Associate Professor, Guest Lec- turer at the Practical Center for Scientific Skills
Tbilisi
L. I. Gabunia
Georgia
Luiza I. Gabunia, Dr. Sci. (Med.), Director of the Practical Center for Scientific Skills
Tbilisi
N. S. Gorgaslidze
Georgia
Nana S. Gorgaslidze, PhD, Professor, Head of the Department of Social and Clinical Pharmacy
Tbilisi
F. M. Khamidova
Uzbekistan
Farida M. Khamidova, Cand. Sci. (Med.), Associate Professor, Head of the Pathological Anatomy Department
Samarkand
L. A. Martemyanova
Belarus
Ludmila A. Martemyanova, Cand. Sci. (Med.), Associate Professor, Head of the Pathological Anatomy Department
Gomel
N. V. Pogosova
Russian Federation
Nana V. Pogosova, Dr. Sci. (Med.), Professor, Deputy General Director for Science and Preventive Cardiology
Moscow
N. Sarrafzadegan
Islamic Republic of Iran
Nizal Sarrafzadegan, PhD, Distinguished Professor, Director of the Isfahan Cardiovascular Research Institute
Isfahan
References
1. WHO reveals leading causes of death and disability worldwide: 2000-2019. World Health Organization. December 9, 2020. Accessed May 10, 2023. https://www.who.int/news/item/0912-2020-who-reveals-leading-causes-of-death-and-disabilityworldwide-2000-2019
2. López-Sendón J, Álvarez-Ortega C, Zamora Auñon P, et al. Classification, prevalence, and outcomes of anticancer therapyinduced cardiotoxicity: the CARDIOTOX registry. Eur Heart J. 2020;41(18):1720–1729. PMID: 32016393. https://doi.org/10.1093/eurheartj/ehaa006
3. Galimzhanov A, Istanbuly S, Tun HN, et al. Cardiovascular outcomes in breast cancer survivors: a systematic review and metaanalysis. Eur J Prev Cardiol. 2023;zwad243. PMID: 37499186. https://doi.org/10.1093/eurjpc/zwad243
4. Association of Oncologists of Russia, Russian Society of Clinical Oncology, Russian Society of Breast Oncologists. Clinical Guidelines. Breast Cancer (2021). Ministry of Health of the Russian Federation. Accessed May 10, 2023. (In Russ.). https://oncologyassociation.ru/wp-content/uploads/2021/02/rak-molochnoj-zhelezy-2021.pdf
5. Gennari A, André F, Barrios CH, et al; ESMO Guidelines Committee. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann Oncol. 2021;32(12):1475–1495. PMID: 34678411. https://doi.org/10.1016/j.annonc.2021.09.019
6. Ren W, Chen M, Qiao Y, Zhao F. Global guidelines for breast cancer screening: a systematic review. Breast. 2022;64:85–99. PMID: 35636342. PMCID: PMC9142711. https://doi.org/10.1016/j.breast.2022.04.003
7. Avagimyan A, Kakturskiy L, Heshmat-Ghahdarijani K, Pogosova N, Sarrafzadegan N. Anthracycline associated disturbances of cardiovascular homeostasis. Curr Probl Cardiol. 2022;47(5):100909. PMID: 34167841. https://doi.org/10.1016/j.cpcardiol.2021.100909
8. Avagimyan AA, Mkrtchyan LG, Kononchuk NB, Kaktursky LV, Agati L. Chemotherapy as a possible trigger for the myocardial lipomatosis development. Arterial Hypertension. 2021;27(6):706–712. (In Russ.). https://doi.org/10.18705/1607-419x-2021-27-6-706-712
9. Avagimyan AA, Mkrtchyan LH, Gevorkyan AA, Kononchuk NB, Kakturskiy LV, Djndoyan ZT. Relationship between chemotherapy and atrial fibrillation: clinical case. Rational Pharmacotherapy in Cardiology. 2021;17(5):785–791. (In Russ.). https://doi.org/10.20996/1819-6446-2021-10-17
10. Shi S, Lv J, Chai R, et al. Opportunities and challenges in cardio-oncology: a bibliometric analysis from 2010 to 2022. Curr Probl Cardiol. 2023;48(8):101227. PMID: 35500730. https://doi.org/10.1016/j.cpcardiol.2022.101227
11. Boytsov SA, Pogosova NV, Ansheles AA, et al. Cardiovascular prevention 2022. Russian national guidelines. Russian Journal of Cardiology. 2023;28(5):119–249. (In Russ.). https://doi.org/10.15829/1560-4071-2023-5452
12. Vasyuk YuA, Gendlin GE, Emelina EI, et al. Consensus statement of Russian experts on the prevention, diagnosis and treatment of cardiotoxicity of anticancer therapy. Russian Journal of Cardiology. 2021;26(9):152–233. (In Russ.). https://doi.org/10.15829/15604071-2021-4703
13. Lyon AR, López-Fernández T, Couch LS, et al; ESC Scientific Document Group. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43(41):4229–4361. Published correction appears in Eur Heart J. 2023;44(18):1621. PMID: 36017568. https://doi.org/10.1093/eurheartj/ehac244
14. Caspani F, Tralongo AC, Campiotti L, Asteggiano R, Guasti L, Squizzato A. Prevention of anthracycline-induced cardiotoxicity: a systematic review and meta-analysis. Intern Emerg Med. 2021;16(2):477–486. PMID: 33011930. https://doi.org/10.1007/s11739-020-02508-8
15. Barbarash OL, Karpov YuA, Kashtalap VV, et al. 2020 clinical practice guidelines for stable coronary artery disease. Russian Journal of Cardiology. 2020;25(11):201–250. (In Russ.).
16. Tereshchenko SN, Shestakova MV, Ageev FT, et al. Rationale for dapagliflozin administration for the prevention of adverse outcomes in patients with heart failure with reduced ejection fraction. Expert consensus statement. Russian Journal of Cardiology. 2020;25(5):114–120. (In Russ.). https://doi.org/10.15829/15604071-2020-3919
17. Kobalava ZhD, Medovchshikov VV, Yeshniyazov NB. Towards quadruple therapy for heart failure with reduced ejection fraction: DAPA-HF secondary analysis data. Russian Journal of Cardiology. 2020;25(5):71–80. (In Russ.). https://doi.org/10.15829/1560-40712020-3870
18. Avagimyan A, Fogacci F, Pogosova N, et al. Diabetic cardiomyopathy: 2023 update by the International Multidisciplinary Board of Experts. Curr Probl Cardiol. 2023;49(1 Pt A):102052. PMID: 37640176. https://doi.org/10.1016/j.cpcardiol.2023.102052
19. Avagimyan AA. Effect of trimetazidine on myocardial karyometry during the doxorubicin-cyclophosphamide mode of chemotherapy prescription. Medicine in Kuzbass. 2022;21(2):25–29. (In Russ.).
20. Avagimyan A, Kakturskiy L. Trimetazidine as a modifier of chemotherapy-induced endothelium homeostasis disturbances. Cardiology in Belarus. 2022;14(3):263–272. https://doi.org/10.34883/pi.2022.14.3.001
21. Avagimyan AA, Kakturskiy LV. Trimetazidine as a modifier of doxorubicin+cyclophosphamide induced hyperdyslipidemia. The Siberian Journal of Clinical and Experimental Medicine. 2022;37(2):105–111. (In Russ.). https://doi.org/10.29001/20738552-2022-37-2-105-111
22. Avagimyan A. Hyperhomocysteinemia as a link of chemotherapy-related endothelium impairment. Curr Probl Cardiol. 2022;47(10):100932. PMID: 34313228. https://doi.org/10.1016/j.cpcardiol.2021.100932
23. Avagimyan A, Heshmat-Ghahdarjiani K, Kakturskiy L. Trimetazidine as a modifier of chemotherapy-induced cardiovascular redox-homeostasis disturbances. Cardiology in Belarus. 2022;14(4):404–411 https://doi.org/10.34883/pi.2022.14.4.004
24. Avagimyan A, Sheibani M, Pogosova N, et al. Possibilities of dapagliflozin-induced cardioprotection on doxorubicin + cyclophosphamide mode of chemotherapy-induced cardiomyopathy. Int J Cardiol. 2023;391:131331. PMID: 37666280. https://doi.org/10.1016/j.ijcard.2023.131331
25. Ng SM, Neubauer S, Rider OJ. Myocardial metabolism in heart failure. Curr Heart Fail Rep. 2023;20(1):63–75. PMID: 36800045. PMCID: PMC9977885. https://doi.org/10.1007/s11897023-00589-y
26. Sheibani M, Azizi Y, Shayan M, et al. Doxorubicin-induced cardiotoxicity: an overview on pre-clinical therapeutic approaches. Cardiovasc Toxicol. 2022;22(4):292–310. PMID: 35061218. https://doi.org/10.1007/s12012-022-09721-1
27. Iqubal A, Iqubal MK, Sharma S, et al. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: old drug with a new vision. Life Sci. 2019;218:112–131. PMID: 30552952. https://doi.org/10.1016/j.lfs.2018.12.018
28. Hou J, Yuan Y, Chen P, et al. Pathological roles of oxidative stress in cardiac microvascular injury. Curr Probl Cardiol. 2023;48(1):101399. PMID: 36103941. https://doi.org/10.1016/j.cpcardiol.2022.101399
29. Marzilli M, Vinereanu D, Lopaschuk G, et al. Trimetazidine in cardiovascular medicine. Int J Cardiol. 2019;293:39–44. Published correction appears in Int J Cardiol. 2020;320:26. PMID: 31178223. https://doi.org/10.1016/j.ijcard.2019.05.063
30. Shu H, Peng Y, Hang W, Zhou N, Wang DW. Trimetazidine in heart failure. Front Pharmacol. 2021;11:569132. PMID: 33597865. PMCID: PMC7883591. https://doi.org/10.3389/fphar.2020.569132
31. Belosludtsev KN, Starinets VS, Belosludtsev MN, Mikheeva IB, Dubinin MV, Belosludtseva NV. Chronic treatment with dapagliflozin protects against mitochondrial dysfunction in the liver of C57BL/6NCrl mice with high-fat diet/streptozotocin-induced diabetes mellitus. Mitochondrion. 2021;59:246–254. PMID: 34144205. https://doi.org/10.1016/j.mito.2021.06.008
32. Yu J, Zhao H, Qi X, et al. Dapagliflozin mediates Plin5/ PPARα signaling axis to attenuate cardiac hypertrophy. Front Pharmacol. 2021;12:730623. PMID: 34630108. PMCID: PMC8495133. https://doi.org/10.3389/fphar.2021.730623
33. Xing YJ, Liu BH, Wan SJ, et al. A SGLT2 inhibitor dapagliflozin alleviates diabetic cardiomyopathy by suppressing highglucose-induced oxidative stress in vivo and in vitro. Front Pharmacol. 2021;12:708177. PMID: 34322029. PMCID: PMC8311522. https://doi.org/10.3389/fphar.2021.708177
34. Nakamura K, Miyoshi T, Yoshida M, et al. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int J Mol Sci. 2022;23(7):3587. PMID: 35408946. PMCID: PMC8999085. https://doi.org/10.3390/ijms23073587
35. Jhund PS, Kondo T, Butt JH, et al. Dapagliflozin across the range of ejection fraction in patients with heart failure: a patientlevel, pooled meta-analysis of DAPA-HF and DELIVER. Nat Med. 2022;28(9):1956–1964. PMID: 36030328. PMCID: PMC9499855. https://doi.org/10.1038/s41591-022-01971-4
36. Furtado RHM, Raz I, Goodrich EL, et al. Efficacy and safety of dapagliflozin in type 2 diabetes according to baseline blood pressure: observations from DECLARE-TIMI 58 trial. Circulation. 2022;145(21):1581–1591. PMID: 35510542. https://doi.org/10.1161/CIRCULATIONAHA.121.058103
37. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–1446. PMID: 32970396. https://doi.org/10.1056/NEJMoa2024816
38. Faggiano A, Gherbesi E, Cardinale D, Vicenzi M, Carugo S. SGLT2-i prevent left ventricular dysfunction induced by anthracycline in mouse model: a systematic-review and metaanalysis. Vascul Pharmacol. 2023;150:1071
Review
For citations:
Avagimyan A.A., Trofimenko A.I., Sheibani M., Kakturskiy L.V., Urazova O.I., Navasardyan G.A., Jndoyan Z.T., Sulashvili N.V., Gabunia L.I., Gorgaslidze N.S., Khamidova F.M., Martemyanova L.A., Pogosova N.V., Sarrafzadegan N. Comparison of Cardioprotective Effects of Dapagliflozin and Trimetazidine in the Model of Doxorubicin-Cyclophosphamide Cardiotoxicity. Innovative Medicine of Kuban. 2023;(4):6-14. (In Russ.) https://doi.org/10.35401/2541-9897-2023-8-4-6-14