Preview

Innovative Medicine of Kuban

Advanced search

Targeted Therapy for Cystic Fibrosis in Children

https://doi.org/10.35401/2541-9897-2023-8-4-142-147

Abstract

A mutation in the CFTR gene causes the malfunctioning of the CFTR protein that is located on the apical membrane of epithelial cells and functions as a chloride channel. The discovery of CFTR modulators is an advance in cystic fibrosis treatment.

Objective: To analyze modern Russian and foreign literature on targeted therapy for cystic fibrosis in children. We also describe the history of cystic fibrosis, evolution in its diagnosis and treatment, and mechanisms behind targeted therapy for cystic fibrosis.

About the Authors

A. V. Burlutskaya
Kuban State Medical University
Russian Federation

Alla V. Burlutskaya, Dr. Sci. (Med.), Head of Pediatrics Department No. 2

Krasnodar



V. Yu. Brisin
Children’s Regional Clinical Hospital
Russian Federation

Viktor Yu. Brisin, Pediatrician, Pulmonologist, Head of the Pulmonology Division

Krasnodar



A. V. Statova
Kuban State Medical University
Russian Federation

Anastasia V. Statova, Cand. Sci. (Med.), Associate Professor at Pediatrics Department No. 2

Krasnodar



O. Yu. Zenkina
Kuban State Medical University
Russian Federation

Oksana Yu. Zenkina, Assistant Professor at Pediatrics Department No. 2

Krasnodar



J. V. Pisotskaya
Kuban State Medical University
Russian Federation

Julia V. Pisotskaya, Resident, Pediatrics Department No. 2

ulitsa M. Sedina 4, Krasnodar, 350063



References

1. The Union of Pediatricians of Russia, Association of Medical Genetics, Russian Respiratory Society, Russian Transplant Society, Association of Children’s Doctors of the Moscow. Cystic Fibrosis: Clinical Guidelines. 2020. (In Russ.).

2. Kondratyeva EI, Voronkova AYu, Efremova AS, et al. Health status of twins with cystic fibrosis and F508del/R334W genotype: opportunities of targeted therapy. Voprosy praktičeskoj pediatrii. 2022;17(3):74–82. (In Russ.). https://doi.org/10.20953/1817-76462022-3-74-82

3. Chagay NB, Khayt GY, Vdovina TM, Shaforost AA. Cystic fibrosis being a polyendocrine disease (review). Probl Endokrinol (Mosk). 2021;67(2):28–39. (In Russ.). PMID: 34004101. PMCID: PMC8926149. https://doi.org/10.14341/probl12694

4. Kutsev SI, Izhevskaya VL, Kondratyeva EI. Targeted therapy for cystic fibrosis. Pulmonologiya. 2021;31(2):226–236. (In Russ.). https://doi.org/10.18093/0869-0189-2021-31-2-226-236

5. Simonova OI, Gorinova YV, Chernevich VP. Cystic fibrosis: a breakthrough in 21st-century therapy. Russian Pediatric Journal. 2020;23(1):35–41. (In Russ.). https://doi.org/10.18821/1560-95612020-23-1-35-41

6. Chermensky AG, Gembitskaya TE, Orlov AV, Makhmutova VR. The use of targeted therapy lumacaftor/ivacaftor in patients with cystic fibrosis. Meditsinskiy sovet. 2022;16(4):98–106. (In Russ.). https://doi.org/10.21518/2079-701x-2022-16-4-98-106

7. The Union of Pediatricians of Russia, Association of Medical Genetics, Russian Respiratory Society, Russian Transplant Society, Association of Children’s Doctors of the Moscow. Cystic Fibrosis: Clinical Guidelines. 2021. (In Russ.).

8. Graeber SY, Vitzthum C, Mall MA. Potential of intestinal current measurement for personalized treatment of patients with cystic fibrosis. J Pers Med. 2021;11(5):384. PMID: 34066648. PMCID: PMC8151208. https://doi.org/10.3390/jpm11050384

9. Petrova NV, Kashirskaya NY, Vasilyeva TA, et al. Analysis of CFTR mutation spectrum in ethnic Russian cystic fibrosis patients. Genes (Basel). 2020;11(5):554. PMID: 32429104. PMCID: PMC7288340. https://doi.org/10.3390/genes11050554

10. Kondratyeva E, Bukharova T, Efremova A, et al. Health characteristics of patients with cystic fibrosis whose genotype includes a variant of the nucleotide sequence c.3140-16T>A and functional analysis of this variant. Genes (Basel). 2021;12(6):837. PMID: 34071719. PMCID: PMC8229552. https://doi.org/10.3390/genes12060837

11. Pinto MC, Silva IAL, Figueira MF, Amaral MD, LopesPacheco M. Pharmacological modulation of ion channels for the treatment of cystic fibrosis. J Exp Pharmacol. 2021;(13):693–723. PMID: 34326672. PMCID: PMC8316759. https://doi.org/10.2147/JEP.S255377

12. Graeber SY, Vitzthum C, Mall MA. Potential of intestinal current measurement for personalized treatment of patients with cystic fibrosis. J Pers Med. 2021;11(5):384. PMID: 34066648. PMCID: PMC8151208. https://doi.org/10.3390/jpm11050384

13. Berkers G, van Mourik P, Vonk AM, et al. Rectal organoids enable personalized treatment of cystic fibrosis. Cell Rep. 2019;26(7):1701–1708.e3. PMID: 30759382. https://doi.org/10.1016/j.celrep.2019.01.068

14. Ramalho AS, Fürstová E, Vonk AM, et al.; Belgian Organoid Project. Correction of CFTR function in intestinal organoids to guide treatment of cystic fibrosis. Eur Respir J. 2021;57(1):1902426. PMID: 32747394. https://doi.org/10.1183/13993003.02426-2019

15. De Boeck K. Cystic fibrosis in the year 2020: a disease with a new face. Acta Paediatr. 2020;109(5):893–899. PMID: 31899933. https://doi.org/10.1111/apa.15155

16. Lopes-Pacheco M. CFTR modulators: shedding light on precision medicine for cystic fibrosis. Front Pharmacol. 2016;7:275. PMID: 27656143. PMCID: PMC5011145. https://doi.org/10.3389/fphar.2016.00275

17. Mall MA, Mayer-Hamblett N, Rowe SM. Cystic fibrosis: emergence of highly effective targeted therapeutics and potential clinical implications. Am J Respir Crit Care Med. 2020;201(10):1193– 1208. PMID: 31860331. PMCID: PMC7233349. https://doi.org/10.1164/rccm.201910-1943SO

18. Fajac I, Wainwright CE. New treatments targeting the basic defects in cystic fibrosis. Presse Med. 2017;46(6 Pt 2):165–175. PMID: 28554723. https://doi.org/10.1016/j.lpm.2017.01.024

19. Shaw M, Khan U, Clancy JP, et al; PROSPECT Investigators of the Cystic Fibrosis Foundation Therapeutics Development Network. Changes in LCI in F508del/F508del patients treated with lumacaftor/ivacaftor: results from the prospect study. J Cyst Fibros. 2020;19(6):931–933. PMID: 32513528. PMCID: PMC9125683. https://doi.org/10.1016/j.jcf.2020.05.010

20. Stanojevic S, Davis SD, Retsch-Bogart G, et al. Progression of lung disease in preschool patients with cystic fibrosis. Am J Respir Crit Care Med. 2017;195(9):1216–1225. PMID: 27943680. PMCID: PMC5439018. https://doi.org/10.1164/rccm.201610-2158OC

21. Burgel PR, Durieu I, Chiron R, et al; French Cystic Fibrosis Reference Network study group. Clinical response to lumacaftorivacaftor in patients with cystic fibrosis according to baseline lung function. J Cyst Fibros. 2021;20(2):220–227. PMID: 32591294. https://doi.org/10.1016/j.jcf.2020.06.012

22. Clancy JP, Cotton CU, Donaldson SH, et al. CFTR modulator theratyping: current status, gaps and future directions. J Cyst Fibros. 2019;18(1):22–34. PMID: 29934203. PMCID: PMC6301143. https://doi.org/10.1016/j.jcf.2018.05.004

23. Southern KW, Patel S, Sinha IP, Nevitt SJ. Correctors (specific therapies for class II CFTR mutations) for cystic fibrosis. Cochrane Database Syst Rev. 2018;8(8):CD010966. PMID: 30070364. PMCID: PMC6513216. https://doi.org/10.1002/14651858.CD010966.pub2

24. Schwarz C, Sutharsan S, Epaud R, et al. Tezacaftor/ivacaftor in people with cystic fibrosis who stopped lumacaftor/ivacaftor due to respiratory adverse events. J Cyst Fibros. 2021;20(2):228–233. PMID: 32586736. PMCID: PMC9187869. https://doi.org/10.1016/j.jcf.2020.06.001

25. Nichols AL, Davies JC, Jones D, Carr SB. Restoration of exocrine pancreatic function in older children with cystic fibrosis on ivacaftor. Paediatr Respir Rev. 2020;35:99–102. PMID: 32386958. https://doi.org/10.1016/j.prrv.2020.04.003

26. Mainz JG, Arnold C, Hentschel J, Tabori H. Effects of ivacaftor in three pediatric siblings with cystic fibrosis carrying the mutations G551D and F508del. Arch Bronconeumol (Engl Ed). 2018;54(4):232–234. PMID: 29103672. https://doi.org/10.1016/j.arbres.2017.09.012

27. Megalaa R, Gopalareddy V, Champion E, Goralski JL. Time for a gut check: pancreatic sufficiency resulting from CFTR modulator use. Pediatr Pulmonol. 2019;54(8):E16–E18. PMID: 31066218. https://doi.org/10.1002/ppul.24353

28. Middleton PG, Mall MA, Dřevínek P, et al; VX17-445102Study Group. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med. 2019;381(19):1809–1819. PMID: 31697873. PMCID: PMC7282384. https://doi.org/10.1056/NEJMoa1908639

29. Misgault B, Chatron E, Reynaud Q, et al. Effect of one-year lumacaftor-ivacaftor treatment on glucose tolerance abnormalities in cystic fibrosis patients. J Cyst Fibros. 2020;19(5):712–716. PMID: 32201160. https://doi.org/10.1016/j.jcf.2020.03.002

30. Bailey J, Rozga M, McDonald CM, et al. Effect of CFTR modulators on anthropometric parameters in individuals with cystic fibrosis: an evidence analysis center systematic review. J Acad Nutr Diet. 2021;121(7):1364–1378.e2. PMID: 32532673. https://doi.org/10.1016/j.jand.2020.03.014

31. Giuliano KA, Wachi S, Drew L, et al. Use of a highthroughput phenotypic screening strategy to identify amplifiers, a novel pharmacological class of small molecules that exhibit functional synergy with potentiators and correctors. SLAS Discov. 2018;23(2):111–121. PMID: 28898585. PMCID: PMC5784457. https://doi.org/10.1177/2472555217729790

32. Li H, Valkenier H, Thorne AG, et al. Anion carriers as potential treatments for cystic fibrosis: transport in cystic fibrosis cells, and additivity to channel-targeting drugs. Chem Sci. 2019;10(42):9663–9672. PMID: 32055336. PMCID: PMC6984391. https://doi.org/10.1039/c9sc04242c

33. Ridley K, Condren M. Elexacaftor-tezacaftor-ivacaftor: the first triple-combination cystic fibrosis transmembrane conductance regulator modulating therapy. J Pediatr Pharmacol Ther. 2020;25(3):192–197. https://doi.org/10.5863/1551-677625.3.192

34. Zakhezina AO. Assessment of external respiration in adolescents. Forcipe. 2021;4(S1):132–133. (In Russ.).

35. Rafeeq MM, Murad HAS. Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med. 2017;15(1):84. PMID: 28449677. PMCID: PMC5408469. https://doi.org/10.1186/s12967-017-1193-9.

36. Kondratyeva EI, Odinaeva ND, Sherman VD, et al. First results of treatment with two CFTR-modulators for cystic fibrosis in childhood. Pediatria Journal named after GN Speransky. 2022;101(3):98–105. (In Russ.). https://doi.org/10.24110/0031403x-2022-101-3-98-105

37. Elborn JS, Ahuja S, Springman E, Mershon J, Grosswald R, Rowe SM. EMPIRE-CF: a phase II randomized placebo-controlled trial of once-daily, oral acebilustat in adult patients with cystic fibrosis – study design and patient demographics. Contemp Clin Trials. 2018;72:86–94. PMID: 30056216. https://doi.org/10.1016/j.cct.2018.07.014

38. Aalbers BL, de Winter-de Groot KM, Arets HGM, et al. Clinical effect of lumacaftor/ivacaftor in F508del homozygous CF patients with FEV1≥90% predicted at baseline. J Cyst Fibros. 2020;19(4):654–658. PMID: 31924546. https://doi.org/10.1016/j.jcf.2019.12.015


Review

For citations:


Burlutskaya A.V., Brisin V.Yu., Statova A.V., Zenkina O.Yu., Pisotskaya J.V. Targeted Therapy for Cystic Fibrosis in Children. Innovative Medicine of Kuban. 2023;(4):142-147. (In Russ.) https://doi.org/10.35401/2541-9897-2023-8-4-142-147

Views: 913


ISSN 2541-9897 (Online)