Pathobiochemical Features of Posthepatectomy Liver Failure and Prospects for Its Metabolic Correction
https://doi.org/10.35401/2541-9897-2024-9-1-144-151
Abstract
We review the current understanding of pathophysiology and pathobiochemistry of conditions following extensive resections of the liver parenchyma and describe potential ways of surgical and metabolic correction, including promising molecular targets for therapy. Reduced residual tissue volume (small-for-size syndrome), parenchymal edema due to hyperperfusion and impaired venous blood outflow, septic complications, organ ischemia-reperfusion, mitochondrial dysfunction, and oxidative stress are considered key pathogenetic factors in liver failure development following extensive resections of the liver parenchyma. Given the above, promising ways of managing posthepatectomy conditions are the use of agents reducing portal pressure (octreotide [somatostatin analogue], terlipressin [vasopressin analogue], and propranolol), energotropic metabolic drugs (combined preparations of succinate and antioxidants, gasotransmitter donors), and antibiotics and synbiotics for prevention of infectious complications. The approaches currently used in clinical practice cannot always effectively manage complications following extensive hepatectomy, so fundamental research should focus on searching and creating effective strategies for prevention and therapy of posthepatectomy liver failure.
Keywords
About the Authors
I. M. BykovRussian Federation
Iliya M. Bykov, Dr. Sci. (Med.), Professor, Head of the Department of Fundamental and Clinical Biochemistry
Kuban State Medical University, ulitsa M. Sedina 4, Krasnodar, 350063
A. S. Shevchenko
Russian Federation
Aleksey S. Shevchenko, Postgraduate Student, Department of Fundamental and Clinical Biochemistry
Krasnodar
I. Yu. Tsymbalyuk
Russian Federation
Igor Yu. Tsymbalyuk, Cand. Sci. (Med.), Assistant Professor at the Department of Fundamental and Clinical Biochemistry
Krasnodar
K. A. Popov
Russian Federation
Konstantin A. Popov, Cand. Sci. (Med.), Associate Professor at the Department of Fundamental and Clinical Biochemistry
Krasnodar
S. M. Tutarisheva
Russian Federation
Saida M. Tutarisheva, Postgraduate Student, Department of Fundamental and Clinical Biochemistry
Krasnodar
E. S. Ustinova
Russian Federation
Ekaterina S. Ustinova, Postgraduate Student, Department of Fundamental and Clinical Biochemistry
Krasnodar
A. P. Storozhuk
Russian Federation
Alexander P. Storozhuk, Dr. Sci. (Med.), Professor at the Department of Fundamental and Clinical Biochemistry
Krasnodar
E. E. Esaulenko
Russian Federation
Elena E. Esaulenko, Dr. Sci. (Bio.), Professor of the Department of Fundamental and Clinical Biochemistry
Krasnodar
References
1. Rahbari NN, Garden OJ, Padbury R, et al. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery. 2011;149(5):713–724. PMID: 21236455. https://doi.org/10.1016/j.surg.2010.10.001
2. Paugam-Burtz C, Janny S, Delefosse D, et al. Prospective validation of the “fifty-fifty” criteria as an early and accurate predictor of death after liver resection in intensive care unit patients. Ann Surg. 2009;249(1):124–128. PMID: 19106687. https://doi.org/10.1097/SLA.0b013e31819279cd
3. Balzan S, Belghiti J, Farges O, et al. The “50-50 criteria” on postoperative day 5: an accurate predictor of liver failure and death after hepatectomy. Ann Surg. 2005;242(6):824–829. PMID: 16327492. PMCID: PMC1409891. https://doi.org/10.1097/01.sla.0000189131.90876.9e
4. Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2021;18(1):40–55. PMID: 32764740. https://doi.org/10.1038/s41575-020-0342-4
5. Elchaninov AV, Fatkhudinov TK, Usman NY, et al. Dynamics of macrophage populations of the liver after subtotal hepatectomy PMC6038314. https://doi.org/10.1186/s12865-018-0260-1
6. Orue-Echebarria MI, Lozano P, Olmedilla L, García Sabrido JL, Asencio JM. “Small-for-flow” syndrome: concept evolution. J Gastrointest Surg. 2020;24(6):1386–1391. PMID: 32314232. https://doi.org/10.1007/s11605-020-04576-9
7. Masuda Y, Yoshizawa K, Ohno Y, Mita A, Shimizu A, Soejima Y. Small-for-size syndrome in liver transplantation: definition, pathophysiology and management. Hepatobiliary Pancreat Dis Int. 2020;19(4):334–341. PMID: 32646775. https://doi.org/10.1016/j.hbpd.2020.06.015
8. Papamichail M, Pizanias M, Heaton ND. Minimizing the risk of small-for-size syndrome after liver surgery. Hepatobiliary Pancreat Dis Int. 2022;21(2):113–133. PMID: 34961675. https://doi.org/10.1016/j.hbpd.2021.12.005
9. Lautt WW, Legare DJ, d’Almeida MS. Adenosine as putative regulator of hepatic arterial flow (the buffer response). Am J Physiol. 1985;248(3 Pt 2):H331–H338. PMID: 2579585. https:// doi.org/10.1152/ajpheart.1985.248.3.H331
10. Cheng P, Li Z, Fu Z, Jian Q, Deng R, Ma Y. Small-forsize syndrome and graft inflow modulation techniques in liver transplantation. Dig Dis. 2023;41(2):250–258. PMID: 35753308. https://doi.org/10.1159/000525540
11. Ezhilarasan D. Endothelin-1 in portal hypertension: the intricate role of hepatic stellate cells. Exp Biol Med (Maywood). 2020;245(16):1504–1512. PMID: 32791849. PMCID: PMC7553093. https://doi.org/10.1177/1535370220949148
12. Li ZW, Wang L. The role of liver sinusoidal endothelial cells in liver remodeling after injury. Hepatobiliary Pancreat Dis Int. 2023;22(1):22–27. PMID: 36182636. https://doi.org/10.1016/j.hbpd.2022.09.007
13. Khodosovsky MN. Correction of oxidative damages during hepatic ischemia-reperfusion syndrome. Journal of the Grodno State Medical University. 2016;(4):20–25. (In Russ.).
14. Lu X, Ding Y, Liu H, et al. The role of hydrogen sulfide regulation of autophagy in liver disorders. Int J Mol Sci. 2022;23(7):4035. PMID: 35409395. PMCID: PMC8999478. https://doi.org/10.3390/ijms23074035
15. Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. Implications of hydrogen sulfide in liver pathophysiology: mechanistic insights and therapeutic potential. J Adv Res. 2020;27:127–135. PMID: 33318872. PMCID: PMC7728580. https://doi.org/10.1016/j.jare.2020.05.010
16. Pretzsch E, Nieß H, Khaled NB, et al. Molecular mechanisms of ischaemia-reperfusion injury and regeneration in the liver-shock and surgery-associated changes. Int J Mol Sci. 2022;23(21):12942. PMID: 36361725. PMCID: PMC9657004. https://doi.org/10.3390/ijms232112942
17. Bagur R, Hajnóczky G. Intracellular Ca2+ sensing: its role in calcium homeostasis and signaling. Mol Cell. 2017;66(6):780– 788. PMID: 28622523. PMCID: PMC5657234. https://doi.org/10.1016/j.molcel.2017.05.028
18. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18(5):1106–1121. PMID: 33785842. PMCID: PMC8008022. https://doi.org/10.1038/s41423-020-00630-3
19. Rampes S, Ma D. Hepatic ischemia-reperfusion injury in liver transplant setting: mechanisms and protective strategies. J Biomed Res. 2019;33(4):221–234. PMID: 32383437. PMCID: PMC6813524. https://doi.org/10.7555/JBR.32.20180087
20. Machado IF, Palmeira CM, Rolo AP. Preservation of mitochondrial health in liver ischemia/reperfusion injury. Biomedicines. 2023;11(3):948. PMID: 36979927. PMCID: PMC10046671. https://doi.org/10.3390/biomedicines11030948
21. Muscate F, Woestemeier A, Gagliani N. Functional heterogeneity of CD4+ T cells in liver inflammation. Semin Immunopathol. 2021;43(4):549–561. PMID: 34463867. PMCID: PMC8443520. https://doi.org/10.1007/s00281-021-00881-w
22. Middleton P, Vergis N. Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap Adv Gastroenterol. 2021;14:17562848211031394. PMID: 34377148. PMCID: PMC8320552. https://doi.org/10.1177/17562848211031394
23. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18(5):1106–1121. PMID: 33785842. PMCID: PMC8008022. https://doi.org/10.1038/s41423-020-00630-3
24. Lai HF, Chau IY, Lei HJ, et al. Postoperative fever after liver resection: incidence, risk factors, and characteristics associated with febrile infectious complication. PLoS One. 2022;17(1):e0262113. PMID: 35025947. PMCID: PMC8758093. https://doi.org/10.1371/journal.pone.0262113
25. Schindl MJ, Redhead DN, Fearon KC, Garden OJ, Wigmore SJ; Edinburgh Liver Surgery and Transplantation Experimental Research Group (eLISTER). The value of residual liver volume as a predictor of hepatic dysfunction and infection after major liver resection. Gut. 2005;54(2):289–296. PMID: 15647196. PMCID: PMC1774834. https://doi.org/10.1136/gut.2004.04652
26. Murtha-Lemekhova A, Fuchs J, Ghamarnejad O, Nikdad M, Probst P, Hoffmann K. Influence of cytokines, circulating markers and growth factors on liver regeneration and post-hepatectomy liver failure: a systematic review and meta-analysis. Sci Rep. 2021;11(1):13739. PMID: 34215781. PMCID: PMC8253792. https://doi.org/10.1038/s41598-021-92888-4
27. Capussotti L, Viganò L, Giuliante F, Ferrero A, Giovannini I, Nuzzo G. Liver dysfunction and sepsis determine operative mortality after liver resection. Br J Surg. 2009;96(1):88–94. PMID: 19109799. https://doi.org/10.1002/bjs.6429
28. Chen WZ, Hu KP, Xu RY, Pan WD. Beneficial effect of splenic artery ligation on bacterial translocation after major liver resection in rats. Dig Liver Dis. 2013;45(3):233–237. PMID: 23157976. https://doi.org/10.1016/j.dld.2012.09.009
29. Meghraoui-Kheddar A, Chousterman BG, Guillou N, et al. Two new neutrophil subsets define a discriminating sepsis signature. Am J Respir Crit Care Med. 2022;205(1):46–59. PMID: 34731593. https://doi.org/10.1164/rccm.202104-1027OC
30. Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in sepsis. Front Immunol. 2019;10:2536. PMID: 31736963. PMCID: PMC6831555. https://doi.org/10.3389/fimmu.2019.02536
31. Press AT, Babic P, Hoffmann B, et al. Targeted delivery of a phosphoinositide 3-kinase γ inhibitor to restore organ function in sepsis. EMBO Mol Med. 2021;13(10):e14436. PMID: 34472699. PMCID: PMC8495460. https://doi.org/10.15252/emmm.202114436
32. Li G, Wang B, Ding X, Zhang X, Tang J, Lin H. Plasma extracellular vesicle delivery of miR-210-3p by targeting ATG7 to promote sepsis-induced acute lung injury by regulating autophagy and activating inflammation. Exp Mol Med. 2021;53(7):1180–1191. PMID: 34321587. PMCID: PMC8333093. https://doi.org/10.1038/s12276-021-00651-6
33. Søreide JA, Deshpande R. Post hepatectomy liver failure (PHLF) – recent advances in prevention and clinical management. Eur J Surg Oncol. 2021;47(2):216–224. PMID: 32943278. https:// doi.org/10.1016/j.ejso.2020.09.001
34. Rahnemai-Azar AA, Cloyd JM, Weber SM, et al. Update on liver failure following hepatic resection: strategies for prediction and avoidance of post-operative liver insufficiency. J Clin Transl Hepatol. 2018;6(1):97–104. PMID: 29577036. PMCID: PMC5863005. https://doi.org/10.14218/JCTH.2017.00060
35. Chan KS, Low JK, Shelat VG. Associated liver partition and portal vein ligation for staged hepatectomy: a review. Transl Gastroenterol Hepatol. 2020;5:37. PMID: 32632388. PMCID: PMC7063517. https://doi.org/10.21037/tgh.2019.12.01
36. Fabes J, Ambler G, Shah B, et al. Protocol for a prospective double-blind, randomised, placebo-controlled feasibility trial of octreotide infusion during liver transplantation. BMJ Open. 2021;11(12):e055864. PMID: 34857585. PMCID: PMC8640665. https://doi.org/10.1136/bmjopen-2021-055864
37. Alikhanov RB, Sorokina AV, Zabozlaev FG, Panchenkov DN, Astakhov DA. Role of octreotide and prednisolone in prophylactic of poshepatectomy liver failure. Experimental study. Khirurgiia (Mosk). 2016;(2):66–68. (In Russ.). PMID: 26977871. https://doi.org/10.17116/hirurgia2016266-68
38. Liu HT, Huang YC, Cheng SB, Huang YT, Lin PT. Effects of coenzyme Q10 supplementation on antioxidant capacity and inflammation in hepatocellular carcinoma patients after surgery: a randomized, placebo-controlled trial. Nutr J. 2016;15(1):85. PMID: 27716246. PMCID: PMC5053088. https://doi.org/10.1186/s12937-016-0205-6
39. Voskanyan SE, Naidyonov EV, Artemyev AI, et al. Comparative results of use liver protecting drugs for prophylaxis of the liver failure after extensive resections of the liver. Khirurgiia (Mosk). 2016;(9):71–75. (In Russ.). PMID: 27723699. https://doi.org/10.17116/hirurgia2016971-75
40. Hu Q, Lukesh JC 3rd. H S donors with cytoprotective ef fects in models of MI/R injury and chemotherapy-induced cardio toxicity. Antioxidants (Basel). 2023;12(3):650. PMID: 36978898. PMCID: PMC10045576. https://doi.org/10.3390/antiox12030650
41. Magierowska K, Bakalarz D, Wójcik D, et al. Evidence for cytoprotective effect of carbon monoxide donor in the development of acute esophagitis leading to acute esophageal epithelium lesions. Cells. 2020;9(5):1203. PMID: 32408627. PMCID: PMC7291282. https://doi.org/10.3390/cells9051203
42. Liang J, Ye Z, Chen S, Wan C, Pan W. The mechanism of bacterial translocation after major hepatectomy in cirrhotic rats. Clinics in Surgery. 2018;3:2002.
43. Usami M, Miyoshi M, Kanbara Y, et al. Effects of perioperative synbiotic treatment on infectious complications, intestinal integrity, and fecal flora and organic acids in hepatic surgery with or without cirrhosis. JPEN J Parenter Enteral Nutr. 2011;35(3):317– 328. PMID: 21527594. https://doi.org/10.1177/0148607110379813
44. Zhang CY, Dong X, Gao J, Lin W, Liu Z, Wang Z. Nanoparticle-induced neutrophil apoptosis increases survival in sepsis and alleviates neurological damage in stroke. Sci Adv. 2019;5(11):eaax7964. PMID: 31723603. PMCID: PMC6834394. https://doi.org/10.1126/sciadv.aax7964
Review
For citations:
Bykov I.M., Shevchenko A.S., Tsymbalyuk I.Yu., Popov K.A., Tutarisheva S.M., Ustinova E.S., Storozhuk A.P., Esaulenko E.E. Pathobiochemical Features of Posthepatectomy Liver Failure and Prospects for Its Metabolic Correction. Innovative Medicine of Kuban. 2024;(1):144-151. (In Russ.) https://doi.org/10.35401/2541-9897-2024-9-1-144-151