Роль экзосом в процессе заживления ран: биологические функции и механистические аспекты
https://doi.org/10.35401/2541-9897-2025-10-3-136-142
Аннотация
Процесс заживления ран представляет собой динамическую и сложную биологическую последовательность этапов, включающую стадии гемостаза, воспаления, клеточной пролиферации и ремоделирования ткани. Несмотря на эффективность традиционных методов терапии, направленных на закрытие раневой поверхности, такие подходы нередко приводят к формированию фиброза и развитию рубцовых изменений. Современные исследования подчеркнули ключевую роль экзосом – наноразмерных внеклеточных везикул, выделяемых различными типами клеток, в регуляции межклеточных взаимодействий во время репарационных процессов. Экзосомы характеризуются богатым содержанием специфичных белков, липидных молекул и нуклеиновых кислот, что позволяет им регулировать иммунные реакции, активизировать процессы ангиогенеза, способствовать перестройке внеклеточного матрикса и влиять на фенотипическое поведение различных типов клеток на каждом этапе процесса заживления. Настоящий обзор направлен на изучение механизмов воздействия экзосом на различные аспекты биологии раны, начиная от их происхождения и особенностей молекулярного состава до конкретных функций в рамках межклеточной коммуникации, уделяя особое внимание перспективности их применения в качестве новых терапевтических агентов для стимуляции регенеративных процессов.
Об авторе
К. ЭскандарЕгипет
Эскандар Киролос, MBBCh, MA, медицинский работник, факультет медицины и хирургии
мухафаза Каир 4037120
Список литературы
1. Wallace HA, Basehore BM, Zito PM. Wound Healing Phases. In: StatPearls. Treasure Island (FL): StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK470443/ PMID: 29262065
2. Jonidi Shariatzadeh F, Currie S, Logsetty S, Spiwak R, Liu S. Enhancing wound healing and minimizing scarring: A comprehensive review of nanofiber technology in wound dressings. Progress in Materials Science. 2025;147: 101350 https://doi.org/10.1016/j.pmatsci.2024.101350
3. Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem. 2022;298(2):101530. PMID: 34953859. PMCID: PMC8784641. https://doi.org/10.1016/j.jbc.2021.101530
4. Fertala J, Wang ML, Rivlin M, et al. Extracellular Targets to Reduce Excessive Scarring in Response to Tissue Injury. Biomolecules. 2023;13(5):758. PMID: 37238628. PMCID: PMC10216402. https://doi.org/10.3390/biom13050758
5. Kumar MA, Baba SK, Sadida HQ, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9(1):27. PMID: 38311623. PMCID: PMC10838959. https://doi.org/10.1038/s41392-024-01735-1
6. Long R, Wang S. Exosomes from preconditioned mesenchymal stem cells: Tissue repair and regeneration. Regen Ther. 2024;25:355-366. PMID: 38374989. PMCID: PMC10875222. https://doi.org/10.1016/j.reth.2024.01.009
7. Choudhary V, Choudhary M, Bollag WB. Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. Int J Mol Sci. 2024;25(7):3790. PMID: 38612601. PMCID: PMC11011291. https://doi.org/10.3390/ijms25073790
8. Zhang Y, Wu D, Zhou C, et al. Engineered extracellular vesicles for tissue repair and regeneration. Burns Trauma. 2024;12:tkae062. PMID: 39439545. PMCID: PMC11495891. https://doi.org/10.1093/burnst/tkae062
9. LaPelusa A, Dave HD. Physiology, hemostasis. In: Stat-Pearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK545263/. PMID: 31424847
10. Scridon A. Platelets and Their Role in Hemostasis and Thrombosis-From Physiology to Pathophysiology and Therapeutic Implications. Int J Mol Sci. 2022;23(21):12772. PMID: 36361561. PMCID: PMC9653660. https://doi.org/10.3390/ijms232112772
11. Janus-Bell E, Mangin PH. The relative importance of platelet integrins in hemostasis, thrombosis and beyond. Haematologica. 2023;108(7):1734-1747. PMID: 36700400. PMCID: PMC10316258. https://doi.org/10.3324/haematol.2022.282136
12. Sousa AB, Barbosa JN. The Role of Neutrophils in Biomaterial-Based Tissue Repair-Shifting Paradigms. J Funct Biomater. 2023;14(6):327. PMID: 37367291. PMCID: PMC10299351. https://doi.org/10.3390/jfb14060327
13. Herb M, Schramm M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel). 2021;10(2):313. PMID: 33669824. PMCID: PMC7923022. https://doi.org/10.3390/antiox10020313
14. Shen S, Wang L, Liu Q, et al. Macrophage-to-myofibroblast transition and its role in cardiac fibrosis. Int Immunopharmacol. 2025;146:113873. PMID: 39693954. https://doi.org/10.1016/j.intimp.2024.113873
15. De-Luna-Gallardo D, Marquez-Espriella C, Cienfuegos-Monroy R. Fundamentals of Wound Healing. Plastic and Reconstructive Surgery Fundamentals. 2024;13–22. https://doi.org/10.1007/978-3-031-61894-9_2
16. Libby JR, Royce H, Walker SR, Li L. The role of extracellular matrix in angiogenesis: Beyond adhesion and structure. Biomater Biosyst. 2024;15:100097. PMID: 39129826. PMCID: PMC11315062. https://doi.org/10.1016/j.bbiosy.2024.100097
17. Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Recent advances in the role of neuroregulation in skin wound healing. Burns Trauma. 2025;13:tkae072. PMID: 39872039. PMCID: PMC11770601. https://doi.org/10.1093/burnst/tkae072
18. Trinh XT, Long NV, Van Anh LT, et al. A Comprehensive Review of Natural Compounds for Wound Healing: Targeting Bioactivity Perspective. Int J Mol Sci. 2022;23(17):9573. PMID: 36076971. PMCID: PMC9455684. https://doi.org/10.3390/ijms23179573
19. Singh D, Rai V, Agrawal DK. Regulation of Collagen I and Collagen III in Tissue Injury and Regeneration. Cardiol Cardiovasc Med. 2023;7(1):5-16. PMID: 36776717. PMCID: PMC9912297. https://doi.org/10.26502/fccm.92920302
20. Wang Y, Jiao L, Qiang C, et al. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother. 2024;171:116116. PMID: 38181715. https:// doi.org/10.1016/j.biopha.2023.116116
21. McElhinney K, Irnaten M, O’Brien C. p53 and Myofibroblast Apoptosis in Organ Fibrosis. Int J Mol Sci. 2023;24(7):6737. PMID: 37047710. PMCID: PMC10095465. https://doi.org/10.3390/ijms24076737
22. Rima M, Dakramanji M, El Hayek E, El Khoury T, Fajloun Z, Rima M. Unveiling the wonders of bacteria-derived extracellular vesicles: From fundamental functions to beneficial applications. Heliyon. 2025;11(4):e42509. PMID: 40028522. PMCID: PMC11869109. https://doi.org/10.1016/j.heliyon.2025.e42509
23. Hade MD, Suire CN, Suo Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells. 2021;10(8):1959. PMID: 34440728. PMCID: PMC8393426. https://doi.org/10.3390/cells10081959
24. Morabbi A, Karimian M. Therapeutic potential of exosomal lncRNAs derived from stem cells in wound healing: focusing on mesenchymal stem cells. Stem Cell Res Ther. 2025;16(1):62. PMID: 39934913. PMCID: PMC11816792. https://doi.org/10.1186/s13287-025-04200-0
25. Xing Y, Sun X, Dou Y, et al. The Immuno-Modulation Effect of Macrophage-Derived Extracellular Vesicles in Chronic Inflammatory Diseases. Front Immunol. 2021;12:785728. PMID: 34975877. PMCID: PMC8716390. https://doi.org/10.3389/fimmu.2021.785728
26. Xiong YY, Gong ZT, Tang RJ, Yang YJ. The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction. Theranostics. 2021;11(3):1046-1058. PMID: 33391520. PMCID: PMC7738892. https://doi.org/10.7150/thno.53326
27. Manzoor T, Farooq N, Sharma A, et al. Exosomes in nanomedicine: a promising cell-free therapeutic intervention in burn wounds. Stem Cell Res Ther. 2024;15(1):355. PMID: 39385310. PMCID: PMC11462792. https://doi.org/10.1186/s13287-024-03970-3
28. Dong X, Xiang H, Li J, et al. Dermal fibroblast-derived extracellular matrix (ECM) synergizes with keratinocytes in promoting re-epithelization and scarless healing of skin wounds: Towards optimized skin tissue engineering. Bioact Mater. 2025;47:1-17. PMID: 39872210. PMCID: PMC11762682. https://doi.org/10.1016/j.bioactmat.2024.12.030
29. Chen BD, Zhao Y, Wu JL, et al. Exosomes in Skin Flap Survival: Unlocking Their Role in Angiogenesis and Tissue Regeneration. Biomedicines. 2025;13(2):353. PMID: 40002766. PMCID: PMC11853446. https://doi.org/10.3390/biomedicines13020353
30. Li C, Wie S, Xu Q, Sun Y, Ning X, Wang Z. Application of ADSCs and their Exosomes in Scar Prevention. Stem Cell Rev Rep. 2022;18(3):952-967. PMID: 34510359. PMCID: PMC8942892. https://doi.org/10.1007/s12015-021-10252-5
31. Chavda VP, Pandya A, Kumar L, Raval N, Vora LK, Pulakkat S, et al. Exosome nanovesicles: A potential carrier for therapeutic delivery. Nano Today. 2023;49:101771. https://doi.org/10.1016/j.nantod.2023.101771
32. Palomar-Alonso N, Lee M, Kim M. Exosomes: Membraneassociated proteins, challenges and perspectives. Biochem Biophys Rep. 2023;37:101599. PMID: 38145105. PMCID: PMC10746368. https://doi.org/10.1016/j.bbrep.2023.101599
33. Pashkova N, Yu L, Schnicker NJ, et al. Interactions of ubiquitin and CHMP5 with the V domain of HD-PTP reveals role for regulation of Vps4 ATPase. Mol Biol Cell. 2021;32(22):ar42. PMID: 34586919. PMCID: PMC8694081. https://doi.org/10.1091/mbc.e21-04-0219
34. Wang C, Chen Y, Hu S, Liu X. Insights into the function of ESCRT and its role in enveloped virus infection. Front Microbiol. 2023;14:1261651. PMID: 37869652. PMCID: PMC10587442. https://doi.org/10.3389/fmicb.2023.1261651
35. Krylova SV, Feng D. The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int J Mol Sci. 2023;24(2):1337. PMID: 36674857. PMCID: PMC9865891. https://doi.org/10.3390/ijms24021337
36. Liu M, Wen Z, Zhang T, Zhang L, Liu X, Wang M. The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis. Front Immunol. 2024;15:1417758. PMID: 38983854. PMCID: PMC11231912. https://doi.org/10.3389/fimmu.2024.1417758
37. Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol. 2023;33(8):667-681. PMID: 36737375. PMCID: PMC10363204. https://doi.org/10.1016/j.tcb.2023.01.002
38. Yang Z, Tang N, Zheng M, Chang Y. Exosomal Long Noncoding RNAs Serve as Biomarkers for Liver Disease. Turk J Gastroenterol. 2023;34(7):674-680. PMID: 37326156. PMCID: PMC10441155. https://doi.org/10.5152/tjg.2023.22741
39. Li X, Wu Y, Jin Y. Exosomal LncRNAs and CircRNAs in lung cancer: Emerging regulators and potential therapeutic targets. Noncoding RNA Res. 2024;9(4):1069-1079. PMID: 39022675. PMCID: PMC11254510. https://doi.org/10.1016/j.ncrna.2024.06.010
40. Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33(9):1744-1762. PMID: 34496230. PMCID: PMC8428804. https://doi.org/10.1016/j.cmet.2021.08.006
41. Lau NCH, Yam JWP. From Exosome Biogenesis to Absorption: Key Takeaways for Cancer Research. Cancers (Basel). 2023;15(7):1992. PMID: 37046653. PMCID: PMC10093369. https://doi.org/10.3390/cancers15071992
42. Nie D, Lv Y, Gao D, Xu A, Li Q, Li J, et al. Enhanced cytosolic RNA delivery through early endosome fusion-mediated release via probiotic-derived lipopolysaccharide (LPS)-incorporated vesicles. Nano Today. 2024;59:102480. https://doi.org/10.1016/j.nantod.2024.102480
43. Hassanzadeh A, Rahman HS, Markov A, et al. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem Cell Res Ther. 2021;12(1):297. PMID: 34020704. PMCID: PMC8138094. https://doi.org/10.1186/s13287-021-02378-7
44. Bicer M. Revolutionizing dermatology: harnessing mesenchymal stem/stromal cells and exosomes in 3D platform for skin regeneration. Arch Dermatol Res. 2024;316(6):242. PMID: 38795200. PMCID: PMC11127839. https://doi.org/10.1007/s00403-024-03055-4
45. Li D, Wu N. Mechanism and application of exosomes in the wound healing process in diabetes mellitus. Diabetes Res Clin Pract. 2022;187:109882. PMID: 35487341. https://doi.org/10.1016/j.diabres.2022.109882
46. Ivosevic Z, Ljujic B, Pavlovic D, Matovic V, Gazdic Jankovic M. Mesenchymal Stem Cell-Derived Extracellular Vesicles: New Soldiers in the War on Immune-Mediated Diseases. Cell Transplant. 2023;32:9636897231207194. PMID: 37882092. PMCID: PMC10605687. https://doi.org/10.1177/09636897231207194
47. Kim M, Shin DI, Choi BH, Min BH. Exosomes from IL-1β-Primed Mesenchymal Stem Cells Inhibited IL-1β- and TNF-α-Mediated Inflammatory Responses in Osteoarthritic SW982 Cells. Tissue Eng Regen Med. 2021;18(4):525-536. PMID: 33495946. PMCID: PMC8325746. https://doi.org/10.1007/s13770-020-00324-x
48. Xu L, Qiu J, Ren Q, et al. Gold nanoparticles modulate macrophage polarization to promote skeletal muscle regeneration. Mater Today Bio. 2025;32:101653. PMID: 40151803. PMCID: PMC11937682. https://doi.org/10.1016/j.mtbio.2025.101653
49. Qin X, He J, Wang X, Wang J, Yang R, Chen X. The functions and clinical application potential of exosomes derived from mesenchymal stem cells on wound repair: a review of recent research advances. Front Immunol. 2023;14:1256687. PMID: 37691943. PMCID: PMC10486026. https://doi.org/10.3389/fimmu.2023.1256687
50. Wan J, Du T, Liu Z, Xu C, Yu S, Zhang Z, et al. Mechanical stress in GelMA/fibrin scaffolds promotes angiogenesis by influencing fibroblast-derived exosome secretion. Materials Today Communications. 2025;44:111892. https://doi.org/10.1016/j.mtcomm.2025.111892
51. Tienda-Vázquez MA, Hanel JM, Márquez-Arteaga EM, et al. Exosomes: A Promising Strategy for Repair, Regeneration and Treatment of Skin Disorders. Cells. 2023;12(12):1625. PMID: 37371095. PMCID: PMC10296902. https://doi.org/10.3390/cells12121625
52. Bi X, Li Y, Dong Z, et al. Recent Developments in Extracellular Matrix Remodeling for Fat Grafting. Front Cell Dev Biol. 2021;9:767362. PMID: 34977018. PMCID: PMC8716396. https:// doi.org/10.3389/fcell.2021.767362
53. Kee LT, Ng CY, Al-Masawa ME, et al. Extracellular Vesicles in Facial Aesthetics: A Review. Int J Mol Sci. 2022;23(12):6742. PMID: 35743181. PMCID: PMC9223821. https://doi.org/10.3390/ijms23126742
54. Zhou S, Xie M, Su J, Cai B, Li J, Zhang K. New insights into balancing wound healing and scarless skin repair. J Tissue Eng. 2023;14:20417314231185848. PMID: 37529248. PMCID: PMC10388637. https://doi.org/10.1177/20417314231185848
55. Cao X, Wu X, Zhang Y, Qian X, Sun W, Zhao Y. Emerging biomedical technologies for scarless wound healing. Bioact Mater. 2024;42:449-477. PMID: 39308549. PMCID: PMC11415838. https://doi.org/10.1016/j.bioactmat.2024.09.001
56. Chu CH, Lee RP, Wu WT, Chen IH, Yeh KT, Wang CC. Advancing Osteoarthritis Treatment: The Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes and Biomaterial Integration. Biomedicines. 2024;12(11):2478. PMID: 39595044. PMCID: PMC11591758. https://doi.org/10.3390/biomedicines12112478
57. Yang G, Waheed S, Wang C, Shekh M, Li Z, Wu J. Exosomes and Their Bioengineering Strategies in the Cutaneous Wound Healing and Related Complications: Current Knowledge and Future Perspectives. Int J Biol Sci. 2023;19(5):1430-1454. PMID: 37056923. PMCID: PMC10086759. https://doi.org/10.7150/ijbs.80430
58. Yadav A, Sharma A, Moulick M, Ghatak S. Nanomanaging Chronic Wounds with Targeted Exosome Therapeutics. Pharmaceutics. 2025;17(3):366. PMID: 40143030. PMCID: PMC11945274. https://doi.org/10.3390/pharmaceutics17030366
59. Kanojia N, Thapa K, Singh TG, Verma N. Exosomes: A promising drug delivery tool in hepatic drug delivery. Journal of Drug Delivery Science and Technology. 2025;107:106761. https://doi.org/10.1016/j.jddst.2025.106761
Рецензия
Для цитирования:
Эскандар К. Роль экзосом в процессе заживления ран: биологические функции и механистические аспекты. Инновационная медицина Кубани. 2025;10(3):136-142. https://doi.org/10.35401/2541-9897-2025-10-3-136-142
For citation:
Eskandar K. Exosomes in Wound Healing: Biological Roles and Mechanistic Insights. Innovative Medicine of Kuban. 2025;10(3):136-142. https://doi.org/10.35401/2541-9897-2025-10-3-136-142