Preview

Инновационная медицина Кубани

Расширенный поиск

Роль экзосом в процессе заживления ран: биологические функции и механистические аспекты

https://doi.org/10.35401/2541-9897-2025-10-3-136-142

Аннотация

Процесс заживления ран представляет собой динамическую и сложную биологическую последовательность этапов, включающую стадии гемостаза, воспаления, клеточной пролиферации и ремоделирования ткани. Несмотря на эффективность традиционных методов терапии, направленных на закрытие раневой поверхности, такие подходы нередко приводят к формированию фиброза и развитию рубцовых изменений. Современные исследования подчеркнули ключевую роль экзосом – наноразмерных внеклеточных везикул, выделяемых различными типами клеток, в регуляции межклеточных взаимодействий во время репарационных процессов. Экзосомы характеризуются богатым содержанием специфичных белков, липидных молекул и нуклеиновых кислот, что позволяет им регулировать иммунные реакции, активизировать процессы ангиогенеза, способствовать перестройке внеклеточного матрикса и влиять на фенотипическое поведение различных типов клеток на каждом этапе процесса заживления. Настоящий обзор направлен на изучение механизмов воздействия экзосом на различные аспекты биологии раны, начиная от их происхождения и особенностей молекулярного состава до конкретных функций в рамках межклеточной коммуникации, уделяя особое внимание перспективности их применения в качестве новых терапевтических агентов для стимуляции регенеративных процессов.

Об авторе

К. Эскандар
Хелуанский университет
Египет

Эскандар Киролос, MBBCh, MA, медицинский работник, факультет медицины и хирургии

мухафаза Каир 4037120



Список литературы

1. Wallace HA, Basehore BM, Zito PM. Wound Healing Phases. In: StatPearls. Treasure Island (FL): StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK470443/ PMID: 29262065

2. Jonidi Shariatzadeh F, Currie S, Logsetty S, Spiwak R, Liu S. Enhancing wound healing and minimizing scarring: A comprehensive review of nanofiber technology in wound dressings. Progress in Materials Science. 2025;147: 101350 https://doi.org/10.1016/j.pmatsci.2024.101350

3. Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem. 2022;298(2):101530. PMID: 34953859. PMCID: PMC8784641. https://doi.org/10.1016/j.jbc.2021.101530

4. Fertala J, Wang ML, Rivlin M, et al. Extracellular Targets to Reduce Excessive Scarring in Response to Tissue Injury. Biomolecules. 2023;13(5):758. PMID: 37238628. PMCID: PMC10216402. https://doi.org/10.3390/biom13050758

5. Kumar MA, Baba SK, Sadida HQ, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9(1):27. PMID: 38311623. PMCID: PMC10838959. https://doi.org/10.1038/s41392-024-01735-1

6. Long R, Wang S. Exosomes from preconditioned mesenchymal stem cells: Tissue repair and regeneration. Regen Ther. 2024;25:355-366. PMID: 38374989. PMCID: PMC10875222. https://doi.org/10.1016/j.reth.2024.01.009

7. Choudhary V, Choudhary M, Bollag WB. Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. Int J Mol Sci. 2024;25(7):3790. PMID: 38612601. PMCID: PMC11011291. https://doi.org/10.3390/ijms25073790

8. Zhang Y, Wu D, Zhou C, et al. Engineered extracellular vesicles for tissue repair and regeneration. Burns Trauma. 2024;12:tkae062. PMID: 39439545. PMCID: PMC11495891. https://doi.org/10.1093/burnst/tkae062

9. LaPelusa A, Dave HD. Physiology, hemostasis. In: Stat-Pearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK545263/. PMID: 31424847

10. Scridon A. Platelets and Their Role in Hemostasis and Thrombosis-From Physiology to Pathophysiology and Therapeutic Implications. Int J Mol Sci. 2022;23(21):12772. PMID: 36361561. PMCID: PMC9653660. https://doi.org/10.3390/ijms232112772

11. Janus-Bell E, Mangin PH. The relative importance of platelet integrins in hemostasis, thrombosis and beyond. Haematologica. 2023;108(7):1734-1747. PMID: 36700400. PMCID: PMC10316258. https://doi.org/10.3324/haematol.2022.282136

12. Sousa AB, Barbosa JN. The Role of Neutrophils in Biomaterial-Based Tissue Repair-Shifting Paradigms. J Funct Biomater. 2023;14(6):327. PMID: 37367291. PMCID: PMC10299351. https://doi.org/10.3390/jfb14060327

13. Herb M, Schramm M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel). 2021;10(2):313. PMID: 33669824. PMCID: PMC7923022. https://doi.org/10.3390/antiox10020313

14. Shen S, Wang L, Liu Q, et al. Macrophage-to-myofibroblast transition and its role in cardiac fibrosis. Int Immunopharmacol. 2025;146:113873. PMID: 39693954. https://doi.org/10.1016/j.intimp.2024.113873

15. De-Luna-Gallardo D, Marquez-Espriella C, Cienfuegos-Monroy R. Fundamentals of Wound Healing. Plastic and Reconstructive Surgery Fundamentals. 2024;13–22. https://doi.org/10.1007/978-3-031-61894-9_2

16. Libby JR, Royce H, Walker SR, Li L. The role of extracellular matrix in angiogenesis: Beyond adhesion and structure. Biomater Biosyst. 2024;15:100097. PMID: 39129826. PMCID: PMC11315062. https://doi.org/10.1016/j.bbiosy.2024.100097

17. Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Recent advances in the role of neuroregulation in skin wound healing. Burns Trauma. 2025;13:tkae072. PMID: 39872039. PMCID: PMC11770601. https://doi.org/10.1093/burnst/tkae072

18. Trinh XT, Long NV, Van Anh LT, et al. A Comprehensive Review of Natural Compounds for Wound Healing: Targeting Bioactivity Perspective. Int J Mol Sci. 2022;23(17):9573. PMID: 36076971. PMCID: PMC9455684. https://doi.org/10.3390/ijms23179573

19. Singh D, Rai V, Agrawal DK. Regulation of Collagen I and Collagen III in Tissue Injury and Regeneration. Cardiol Cardiovasc Med. 2023;7(1):5-16. PMID: 36776717. PMCID: PMC9912297. https://doi.org/10.26502/fccm.92920302

20. Wang Y, Jiao L, Qiang C, et al. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother. 2024;171:116116. PMID: 38181715. https:// doi.org/10.1016/j.biopha.2023.116116

21. McElhinney K, Irnaten M, O’Brien C. p53 and Myofibroblast Apoptosis in Organ Fibrosis. Int J Mol Sci. 2023;24(7):6737. PMID: 37047710. PMCID: PMC10095465. https://doi.org/10.3390/ijms24076737

22. Rima M, Dakramanji M, El Hayek E, El Khoury T, Fajloun Z, Rima M. Unveiling the wonders of bacteria-derived extracellular vesicles: From fundamental functions to beneficial applications. Heliyon. 2025;11(4):e42509. PMID: 40028522. PMCID: PMC11869109. https://doi.org/10.1016/j.heliyon.2025.e42509

23. Hade MD, Suire CN, Suo Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells. 2021;10(8):1959. PMID: 34440728. PMCID: PMC8393426. https://doi.org/10.3390/cells10081959

24. Morabbi A, Karimian M. Therapeutic potential of exosomal lncRNAs derived from stem cells in wound healing: focusing on mesenchymal stem cells. Stem Cell Res Ther. 2025;16(1):62. PMID: 39934913. PMCID: PMC11816792. https://doi.org/10.1186/s13287-025-04200-0

25. Xing Y, Sun X, Dou Y, et al. The Immuno-Modulation Effect of Macrophage-Derived Extracellular Vesicles in Chronic Inflammatory Diseases. Front Immunol. 2021;12:785728. PMID: 34975877. PMCID: PMC8716390. https://doi.org/10.3389/fimmu.2021.785728

26. Xiong YY, Gong ZT, Tang RJ, Yang YJ. The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction. Theranostics. 2021;11(3):1046-1058. PMID: 33391520. PMCID: PMC7738892. https://doi.org/10.7150/thno.53326

27. Manzoor T, Farooq N, Sharma A, et al. Exosomes in nanomedicine: a promising cell-free therapeutic intervention in burn wounds. Stem Cell Res Ther. 2024;15(1):355. PMID: 39385310. PMCID: PMC11462792. https://doi.org/10.1186/s13287-024-03970-3

28. Dong X, Xiang H, Li J, et al. Dermal fibroblast-derived extracellular matrix (ECM) synergizes with keratinocytes in promoting re-epithelization and scarless healing of skin wounds: Towards optimized skin tissue engineering. Bioact Mater. 2025;47:1-17. PMID: 39872210. PMCID: PMC11762682. https://doi.org/10.1016/j.bioactmat.2024.12.030

29. Chen BD, Zhao Y, Wu JL, et al. Exosomes in Skin Flap Survival: Unlocking Their Role in Angiogenesis and Tissue Regeneration. Biomedicines. 2025;13(2):353. PMID: 40002766. PMCID: PMC11853446. https://doi.org/10.3390/biomedicines13020353

30. Li C, Wie S, Xu Q, Sun Y, Ning X, Wang Z. Application of ADSCs and their Exosomes in Scar Prevention. Stem Cell Rev Rep. 2022;18(3):952-967. PMID: 34510359. PMCID: PMC8942892. https://doi.org/10.1007/s12015-021-10252-5

31. Chavda VP, Pandya A, Kumar L, Raval N, Vora LK, Pulakkat S, et al. Exosome nanovesicles: A potential carrier for therapeutic delivery. Nano Today. 2023;49:101771. https://doi.org/10.1016/j.nantod.2023.101771

32. Palomar-Alonso N, Lee M, Kim M. Exosomes: Membraneassociated proteins, challenges and perspectives. Biochem Biophys Rep. 2023;37:101599. PMID: 38145105. PMCID: PMC10746368. https://doi.org/10.1016/j.bbrep.2023.101599

33. Pashkova N, Yu L, Schnicker NJ, et al. Interactions of ubiquitin and CHMP5 with the V domain of HD-PTP reveals role for regulation of Vps4 ATPase. Mol Biol Cell. 2021;32(22):ar42. PMID: 34586919. PMCID: PMC8694081. https://doi.org/10.1091/mbc.e21-04-0219

34. Wang C, Chen Y, Hu S, Liu X. Insights into the function of ESCRT and its role in enveloped virus infection. Front Microbiol. 2023;14:1261651. PMID: 37869652. PMCID: PMC10587442. https://doi.org/10.3389/fmicb.2023.1261651

35. Krylova SV, Feng D. The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int J Mol Sci. 2023;24(2):1337. PMID: 36674857. PMCID: PMC9865891. https://doi.org/10.3390/ijms24021337

36. Liu M, Wen Z, Zhang T, Zhang L, Liu X, Wang M. The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis. Front Immunol. 2024;15:1417758. PMID: 38983854. PMCID: PMC11231912. https://doi.org/10.3389/fimmu.2024.1417758

37. Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol. 2023;33(8):667-681. PMID: 36737375. PMCID: PMC10363204. https://doi.org/10.1016/j.tcb.2023.01.002

38. Yang Z, Tang N, Zheng M, Chang Y. Exosomal Long Noncoding RNAs Serve as Biomarkers for Liver Disease. Turk J Gastroenterol. 2023;34(7):674-680. PMID: 37326156. PMCID: PMC10441155. https://doi.org/10.5152/tjg.2023.22741

39. Li X, Wu Y, Jin Y. Exosomal LncRNAs and CircRNAs in lung cancer: Emerging regulators and potential therapeutic targets. Noncoding RNA Res. 2024;9(4):1069-1079. PMID: 39022675. PMCID: PMC11254510. https://doi.org/10.1016/j.ncrna.2024.06.010

40. Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33(9):1744-1762. PMID: 34496230. PMCID: PMC8428804. https://doi.org/10.1016/j.cmet.2021.08.006

41. Lau NCH, Yam JWP. From Exosome Biogenesis to Absorption: Key Takeaways for Cancer Research. Cancers (Basel). 2023;15(7):1992. PMID: 37046653. PMCID: PMC10093369. https://doi.org/10.3390/cancers15071992

42. Nie D, Lv Y, Gao D, Xu A, Li Q, Li J, et al. Enhanced cytosolic RNA delivery through early endosome fusion-mediated release via probiotic-derived lipopolysaccharide (LPS)-incorporated vesicles. Nano Today. 2024;59:102480. https://doi.org/10.1016/j.nantod.2024.102480

43. Hassanzadeh A, Rahman HS, Markov A, et al. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem Cell Res Ther. 2021;12(1):297. PMID: 34020704. PMCID: PMC8138094. https://doi.org/10.1186/s13287-021-02378-7

44. Bicer M. Revolutionizing dermatology: harnessing mesenchymal stem/stromal cells and exosomes in 3D platform for skin regeneration. Arch Dermatol Res. 2024;316(6):242. PMID: 38795200. PMCID: PMC11127839. https://doi.org/10.1007/s00403-024-03055-4

45. Li D, Wu N. Mechanism and application of exosomes in the wound healing process in diabetes mellitus. Diabetes Res Clin Pract. 2022;187:109882. PMID: 35487341. https://doi.org/10.1016/j.diabres.2022.109882

46. Ivosevic Z, Ljujic B, Pavlovic D, Matovic V, Gazdic Jankovic M. Mesenchymal Stem Cell-Derived Extracellular Vesicles: New Soldiers in the War on Immune-Mediated Diseases. Cell Transplant. 2023;32:9636897231207194. PMID: 37882092. PMCID: PMC10605687. https://doi.org/10.1177/09636897231207194

47. Kim M, Shin DI, Choi BH, Min BH. Exosomes from IL-1β-Primed Mesenchymal Stem Cells Inhibited IL-1β- and TNF-α-Mediated Inflammatory Responses in Osteoarthritic SW982 Cells. Tissue Eng Regen Med. 2021;18(4):525-536. PMID: 33495946. PMCID: PMC8325746. https://doi.org/10.1007/s13770-020-00324-x

48. Xu L, Qiu J, Ren Q, et al. Gold nanoparticles modulate macrophage polarization to promote skeletal muscle regeneration. Mater Today Bio. 2025;32:101653. PMID: 40151803. PMCID: PMC11937682. https://doi.org/10.1016/j.mtbio.2025.101653

49. Qin X, He J, Wang X, Wang J, Yang R, Chen X. The functions and clinical application potential of exosomes derived from mesenchymal stem cells on wound repair: a review of recent research advances. Front Immunol. 2023;14:1256687. PMID: 37691943. PMCID: PMC10486026. https://doi.org/10.3389/fimmu.2023.1256687

50. Wan J, Du T, Liu Z, Xu C, Yu S, Zhang Z, et al. Mechanical stress in GelMA/fibrin scaffolds promotes angiogenesis by influencing fibroblast-derived exosome secretion. Materials Today Communications. 2025;44:111892. https://doi.org/10.1016/j.mtcomm.2025.111892

51. Tienda-Vázquez MA, Hanel JM, Márquez-Arteaga EM, et al. Exosomes: A Promising Strategy for Repair, Regeneration and Treatment of Skin Disorders. Cells. 2023;12(12):1625. PMID: 37371095. PMCID: PMC10296902. https://doi.org/10.3390/cells12121625

52. Bi X, Li Y, Dong Z, et al. Recent Developments in Extracellular Matrix Remodeling for Fat Grafting. Front Cell Dev Biol. 2021;9:767362. PMID: 34977018. PMCID: PMC8716396. https:// doi.org/10.3389/fcell.2021.767362

53. Kee LT, Ng CY, Al-Masawa ME, et al. Extracellular Vesicles in Facial Aesthetics: A Review. Int J Mol Sci. 2022;23(12):6742. PMID: 35743181. PMCID: PMC9223821. https://doi.org/10.3390/ijms23126742

54. Zhou S, Xie M, Su J, Cai B, Li J, Zhang K. New insights into balancing wound healing and scarless skin repair. J Tissue Eng. 2023;14:20417314231185848. PMID: 37529248. PMCID: PMC10388637. https://doi.org/10.1177/20417314231185848

55. Cao X, Wu X, Zhang Y, Qian X, Sun W, Zhao Y. Emerging biomedical technologies for scarless wound healing. Bioact Mater. 2024;42:449-477. PMID: 39308549. PMCID: PMC11415838. https://doi.org/10.1016/j.bioactmat.2024.09.001

56. Chu CH, Lee RP, Wu WT, Chen IH, Yeh KT, Wang CC. Advancing Osteoarthritis Treatment: The Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes and Biomaterial Integration. Biomedicines. 2024;12(11):2478. PMID: 39595044. PMCID: PMC11591758. https://doi.org/10.3390/biomedicines12112478

57. Yang G, Waheed S, Wang C, Shekh M, Li Z, Wu J. Exosomes and Their Bioengineering Strategies in the Cutaneous Wound Healing and Related Complications: Current Knowledge and Future Perspectives. Int J Biol Sci. 2023;19(5):1430-1454. PMID: 37056923. PMCID: PMC10086759. https://doi.org/10.7150/ijbs.80430

58. Yadav A, Sharma A, Moulick M, Ghatak S. Nanomanaging Chronic Wounds with Targeted Exosome Therapeutics. Pharmaceutics. 2025;17(3):366. PMID: 40143030. PMCID: PMC11945274. https://doi.org/10.3390/pharmaceutics17030366

59. Kanojia N, Thapa K, Singh TG, Verma N. Exosomes: A promising drug delivery tool in hepatic drug delivery. Journal of Drug Delivery Science and Technology. 2025;107:106761. https://doi.org/10.1016/j.jddst.2025.106761


Рецензия

Для цитирования:


Эскандар К. Роль экзосом в процессе заживления ран: биологические функции и механистические аспекты. Инновационная медицина Кубани. 2025;10(3):136-142. https://doi.org/10.35401/2541-9897-2025-10-3-136-142

For citation:


Eskandar K. Exosomes in Wound Healing: Biological Roles and Mechanistic Insights. Innovative Medicine of Kuban. 2025;10(3):136-142. https://doi.org/10.35401/2541-9897-2025-10-3-136-142

Просмотров: 14


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 2541-9897 (Online)