Near-Infrared Spectroscopy as a Tool for Preventing Hypoxic Complications in Children
https://doi.org/10.35401/2541-9897-2025-10-4-136-144
Abstract
Hypoxia is a common complication of critical conditions in neonatology and pediatrics, leading to impaired oxidative processes, development of acidosis, decreased cellular energy balance, excessive neurotransmitters, disruption of glial and neuronal metabolism. Equally important is the prevention of hypoxic brain injury during anesthesia. A promising and actively developing approach that allows physicians to manage anesthetic risks is the assessment of cerebral hemodynamics, particularly through the use of near-infrared spectroscopy. This method enables non-invasive monitoring of regional cerebral oxygenation, which at least theoretically, may help anesthesiologists and intensivists prevent hypoxic complications in children. Each method used in clinical practice has its advantages and disadvantages. One of the limitations of near-infrared spectroscopy is the lack of clearly defined diagnostic criteria and the insufficient evidence supporting its efficacy and clinical relevance in improving postoperative outcomes in both the short and long term. Nevertheless, measurements based on the Beer-Lambert law, supported by numerous publications and studies, provides a reliable foundation for further research afocused on improving monitoring strategies and timely correction of hypoxic and ishemic cerebral brain changes through NIRS-based cerebral oxygenation monitoring.
About the Authors
K. A. KleymenovРоссия
Kirill A. Kleymenov, Anesthesiologist Intensivist
Oktyabrsky Avenue 22, Kemerovo, 650066
E. V. Grigoriev
Россия
Evgeny V. Grigoriev, Dr Sci. (Med.), Professor of the Russian Academy of Sciences, Deputy Director for Scientific and Medical Affairs
Kemerovo
E. A. Kameneva
Россия
Evgeniya A. Kameneva, Dr. Sci. (Med.), Anesthesiologist Intensivist, Chief Physician
Kemerovo
V. G. Mozes
Россия
Vadim G. Mozes, Dr. Sci. (Med.), Professor, Deputy Chief Physician for Scientific Affairs
Kemerovo
E. V. Rudaeva
Россия
Elena V. Rudaeva, Cand. Sci. (Med.), Associate Professor, Department of Obstetrics and Gynecology named after Prof. G.A. Usha kova
Kemerovo
S. I. Elgina
Россия
Svetlana I. Elgina, Dr. Sci. (Med.), Associate Professor, Department of Obstetrics and Gynecology named after Prof. G.A. Ushakova
Kemerovo
K. B. Mozes
Россия
Mozes Kira Borisovna, Assistant Professor, Department of Outpatient Therapy, Postgraduate Training and Nursing
Kemerovo
References
1. Snisar VI, Pavlysh OS. Non-Invasive Monitoring of Cerebral Oximetry in Children. EMERGENCY MEDICINE. 2018;6(93):35-41. (In Russ.). https://doi.org/10.22141/2224-0586.6.93.2018.147640
2. Ferrari M, Giannini I, Sideri G, Zanette E. Continuous non invasive monitoring of human brain by near infrared spectroscopy. Adv Exp Med Biol. 1985;191:873-882. PMID: 3008520. https:// doi.org/10.1007/978-1-4684-3291-6_88
3. Wolfberg AJ, du Plessis AJ. Near-infrared spectroscopy in the fetus and neonate. Clin Perinatol. 2006;33(3):707-viii. PMID: 16950321. https://doi.org/10.1016/j.clp.2006.06.010
4. Sood BG, McLaughlin K, Cortez J. Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med. 2015;20(3):164-172. PMID: 25934116. https://doi.org/10.1016/j. siny.2015.03.008
5. Teberdieva SO, Ushakova LV, Burov AA, Kirtbaya AR, Kryuchko DS. Clinical and prognostic value of cerebral oximetry in newborns with congenital malformations in the perioperative period. Neonatology: news, views, education. 2017;4(18):88-95. (In Russ.) https://doi.org/10.24411/2308-2402-2017-00008
6. Bansal V, Smischney NJ, Kashyap R, et al. Reintubation Summation Calculation: A Predictive Score for Extubation Failure in Critically Ill Patients. Front Med (Lausanne). 2022;8:789440. PMID: 35252224. PMCID: PMC8891541. https://doi.org/10.3389/fmed.2021.789440
7. Tsou PY, Garcia AV, Yiu A, Vaidya DM, Bembea MM. Association of Cerebral Oximetry with Outcomes after Extracorporeal Membrane Oxygenation. Neurocrit Care. 2020;33(2):429-437. PMID: 31925732. PMCID: PMC7842183. https://doi.org/10.1007/s12028-019-00892-4
8. Alexandrovich YS, Pshenisnov KV. Monitoring of oxygen status of children in critical state. Toljattinskij medicinskij konsilium.2011;5-6:7-13. (In Russ.)
9. Alekseeva EA, Aleksandrov AE, Sharkov SM. Developmental features of cerebral oximetry in children. Russian pediatric journal. 2012;5:17-19. (In Russ.).
10. Alekseeva EA, Aleksandrov AE, Sharkov SM. Brain oxygen status in children in the intra and postoperative period associated with inhalation anesthesia. Russian journal of pediatric surgery. 2014;18(4):32-34. (In Russ.)
11. Vedrenne-Cloquet M, Lévy R, Chareyre J, et al. Association of Cerebral Oxymetry with Short-Term Outcome in Critically ill Children Undergoing Extracorporeal Membrane Oxygenation.
12. Neurocrit Care. 2021;35(2):409-417. PMID: 33432528. https:// doi.org/10.1007/s12028-020-01179-9
13. Verishko AS, Girdjuk VP, Lyshhik VT. Cerebral’naja oksimetrija i ul’trasonografija v neinvazivnom kontrole mozgovogo krovotoka u nejroreanimacionnyh pacientov. Sbornik materialov konferencii studentov i molodyh uchenyh, posvjashhennyj 60-letiju uchrezhdenija obrazovanija Grodnenskij gosudarstvennyj medicinskij universitet 2018:110-111. (In Russ.)
14. Alekseeva EA, Aleksandrov AE, Sharkov SM, Basargina EN, Sugak AB, Ivanov AP. Effect of cardiovascular disorders on cerebral oxygenation in children. Russian Journal of Anaesthesiology and Reanimatology. 2014;59(5):45-47. (In Russ.)
15. Fischer GW, Lin HM, Krol M, et al. Noninvasive cerebral oxygenation may predict outcome in patients undergoing aortic arch surgery. J Thorac Cardiovasc Surg. 2011;141(3):815-821. PMID: 20579669. https://doi.org/10.1016/j.jtcvs.2010.05.017
16. Massaro AN, Govindan RB, Vezina G, et al. Impaired cerebral autoregulation and brain injury in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. J Neurophysiol. 2015;114(2):818-824. PMID: 26063779. PMCID: PMC4533061. https://doi.org/10.1152/jn.00353.2015
17. Peng S, Boudes E, Tan X, Saint-Martin C, Shevell M, Wintermark P. Does near-infrared spectroscopy identify asphyxiated newborns at risk of developing brain injury during hypothermia treatment?. Am J Perinatol. 2015;32(6):555-564. PMID: 25594221. https://doi.org/10.1055/s-0034-1396692
18. Peng C, Hou X. Applications of functional near-infrared spectroscopy (fNIRS) in neonates. Neurosci Res. 2021;170:18-23. PMID: 33347910. https://doi.org/10.1016/j.neures.2020.11.003
19. Gnedko T, Kapura N, Sankovets D, Ulezko E, Beresten S. Indicators of cerebral oxygenation and hemodynamics in neonates with respiratory disorders. Pediatrics. Eastern Europe. 2016; 4(3):381- 388. (In Russ.).
20. Sankovets D, Hnedzko T, Svirskaya O. Daily Amplitude of Cerebral Regional Oxygen Saturationas a Criterion of Eff ectiveness of Intensive Care in Neonates with Respiratory Disorders. Pediatrics. Eastern Europe. 2020;8(4):498-512. (In Russ.). https://doi.org/10.34883/pi.2020.8.4.002
21. Sankovets D.N. Cerebral oximetry: applications in neonatology. Pediatrics. Eastern europe. 2015;4(12):108-117. (In Russ.)
22. Evsyukova II, Zvereva NA, Gurieva NG, Velichko TA. The feature of brain oxygenation in the sleep cycle of healthy newborn babies. Pediatrician. 2019;10(6):5-11. (In Russ.). https://doi.org/10.17816/ped1065-11
23. Popova NN. Antenatalnye prediktory ishodov beremennosti [Cand Med Sci dissertation abstract]. Rostov-on-Don. 2010: 25. (In Russ.)
24. Abramo T, Aggarwal N, Kane I, Crossman K, Meredith M. Cerebral oximetry and cerebral blood flow monitoring in 2 pediatric survivors with out-of-hospital cardiac arrest. Am J Emerg Med. 2014;32(4):394.e5-394.e10. PMID: 24275043. https://doi.org/10.1016/j.ajem.2013.10.039
25. Chakravarti S, Srivastava S, Mittnacht AJ. Near infrared spectroscopy (NIRS) in children. Semin Cardiothorac Vasc Anesth. 2008;12(1):70-79. PMID: 18387980. https://doi.org/10.1177/1089253208316444
26. DiNardo JA. Cerebral Oximetry in Children: So NIRS Yet So Far. Anesth Analg. 2019;128(4):605-606. PMID: 30883409. https://doi.org/10.1213/ane.0000000000002844
27. Tuna AT, Akkoyun I, Darcin S, Palabiyik O. Effects of carbon dioxide insufflation on regional cerebral oxygenation during laparoscopic surgery in children: a prospective study. Braz J Anesthesiol. 2016;66(3):249-253. PMID: 27108820. https://doi.org/10.1016/j.bjane.2014.10.004
28. Gipson CL, Johnson GA, Fisher R, et al. Changes in cerebral oximetry during peritoneal insufflation for laparoscopic procedures. J Minim Access Surg. 2006;2(2):67-72. PMID: 21170237. PMCID: PMC2997275. https://doi.org/10.4103/0972-9941.26651
29. Hirsch JC, Charpie JR, Ohye RG, Gurney JG. Near-infrared spectroscopy: what we know and what we need to know--a systematic review of the congenital heart disease literature. J Thorac Cardiovasc Surg. 2009;137(1): 154-159.e12. PMID: 19154918. https://doi.org/10.1016/j.jtcvs.2008.08.005
30. Mitsuta H, Ohdan H, Fudaba Y, et al. Near-infrared spectroscopic analysis of hemodynamics and mitochondrial redox in right lobe grafts in living-donor liver transplantation. Am J Transplant. 2006;6(4):797-805. PMID: 16539638. https://doi.org/10.1111/j.1600-6143.2006.01247.x
31. Dewhirst E, Walia H, Samora WP, Beebe AC, Klamar JE, Tobias JD. Changes in cerebral oxygenation based on intraoperative ventilation strategy. Med Devices (Auckl). 2018;11:253-258. PMID: 30100768. PMCID: PMC6065577. https://doi.org/10.2147/ mder.s158262
32. Suemori T, Skowno J, Horton S, Bottrell S, Butt W, Davidson AJ. Cerebral oxygen saturation and tissue hemoglobin concentration as predictive markers of early postoperative outcomes after pediatric cardiac surgery. Paediatr Anaesth. 2016;26(2):182-189. PMID: 26619804. https://doi.org/10.1111/pan.12800
33. Greisen G, Leung T, Wolf M. Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care?. Philos Trans A Math Phys Eng Sci. 2011;369(1955):4440-4451. PMID: 22006900. PMCID: PMC3263787. https://doi.org/10.1098/rsta.2011.0261
34. Juliana N, Abu Yazit NA, Kadiman S, et al. Intraoperative cerebral oximetry in open heart surgeries reduced postoperative complications: A retrospective study. PLoS One. 2021;16(5):e0251157. PMID: 34038405. PMCID: PMC8153416. https://doi.org/10.1371/journal.pone.0251157
35. Knirsch W, Stutz K, Kretschmar O, et al. Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children. Acta Anaesthesiol Scand. 2008;52(10):1370-1374. PMID:
36. https://doi.org/10.1111/j.1399-6576.2008.01703.x
37. Sakamoto T, Hatsuoka S, Stock UA, et al. Prediction of safe duration of hypothermic circulatory arrest by near-infrared spectroscopy. J Thorac Cardiovasc Surg. 2001;122(2):339-350. PMID: 11479508. https://doi.org/10.1067/mtc.2001.115242
38. Lian C, Li P, Wang N, Lu Y, Shangguan W. Comparison of basic regional cerebral oxygen saturation values in patients of different ages: a pilot study. J Int Med Res. 2020;48(8):300060520936868. PMID: 32833525. PMCID: PMC7448148. https://doi.org/10.1177/0300060520936868
39. Kandachar SS, Annamalai A. NIRS: So near yet so far (From the brain). Ann Card Anaesth. 2020;23(4):505-507. PMID: 33109813. PMCID: PMC7879887. https://doi.org/10.4103/aca.aca_97_19
40. Korček P, Straňák Z, Širc J, Naulaers G. The role of nearinfrared spectroscopy monitoring in preterm infants. J Perinatol. 2017;37(10):1070-1077. PMID: 28471443. https://doi.org/10.1038/jp.2017.60
41. Kussman BD, Wypij D, DiNardo JA, et al. Cerebral oximetry during infant cardiac surgery: evaluation and relationship to early postoperative outcome. Anesth Analg. 2009;108(4):1122- 1131. PMID: 19299774. PMCID: PMC2782610. https://doi.org/10.1213/ane.0b013e318199dcd2
42. Sakamoto T, Zurakowski D, Duebener LF, et al. Interaction of temperature with hematocrit level and pH determines safe duration of hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2004;128(2):220-232. PMID: 15282458. https://doi.org/10.1016/j.jtcvs.2003.11.070
43. Zogogiannis ID, Iatrou CA, Lazarides MK, et al. Evaluation of an intraoperative algorithm based on near-infrared refracted spectroscopy monitoring, in the intraoperative decision for shunt placement, in patients undergoing carotid endarterectomy. Middle East J Anaesthesiol. 2011;21(3):367-373. PMID: 22428491
44. Lecluyse V, Couture EJ, Denault AY. A Proposed Approach to Cerebral and Somatic Desaturation in the Intensive Care Unit: Preliminary Experience and Review. J Cardiothorac Vasc Anesth. 2017;31(5):1805-1809. PMID: 28552296. https://doi.org/10.1053/j.jvca.2017.02.175
45. Kussman BD, Wypij D, Laussen PC, et al. Relationship of intraoperative cerebral oxygen saturation to neurodevelopmental outcome and brain magnetic resonance imaging at 1 year of age in infants undergoing biventricular repair. Circulation. 2010;122(3):245-254. PMID: 20606124. PMCID: PMC2945235. https://doi.org/10.1161/circulationaha.109.902338
46. Vretzakis G, Georgopoulou S, Stamoulis K, et al. Monitoring of brain oxygen saturation (INVOS) in a protocol to direct blood transfusions during cardiac surgery: a prospective randomized clinical trial. J Cardiothorac Surg. 2013;8:145. PMID: 23758929. PMCID: PMC3691733. https://doi.org/10.1186/1749-8090-8-145
47. Holmgaard F, Vedel AG, Rasmussen LS, Paulson OB, Nilsson JC, Ravn HB. The association between postoperative cognitive dysfunction and cerebral oximetry during cardiac surgery: a secondary analysis of a randomised trial. Br J Anaesth. 2019;123(2):196-205. PMID: 31104758. PMCID: PMC6676044. https://doi.org/10.1016/j.bja.2019.03.045
Review
For citations:
Kleymenov K.A., Grigoriev E.V., Kameneva E.A., Mozes V.G., Rudaeva E.V., Elgina S.I., Mozes K.B. Near-Infrared Spectroscopy as a Tool for Preventing Hypoxic Complications in Children. Innovative Medicine of Kuban. 2025;10(4):136-144. (In Russ.) https://doi.org/10.35401/2541-9897-2025-10-4-136-144
JATS XML




























