Preview

Innovative Medicine of Kuban

Advanced search

MicroRNA as therapeutic targets for neuroblastomas

https://doi.org/10.35401/2500-0268-2019-16-4-66-71

Abstract

Neuroblastoma is one of the most common extracranial solid tumors in children. One of the main causes of death from childhood cancer in children aged one to five years, and it accounts for about 15% of all deaths from cancer in children. They have characteristic features, such as an early age of onset, a high frequency of metastasis in the diagnosis of patients older than 1 year and a tendency to spontaneous regression of tumors in young children. Although several prognostic factors were identified (age, stage, histology, heredity), identifying non-invasive biomarkers for disease surveillance and monitoring therapy is indeed still a clinical necessity. In this review, we describe the latest miRNA data in neuroblastoma, with an emphasis on those involved in tumor progression, metastasis, and drug resistance. In addition, we will discuss their potential use in the treatment of this tumor.

About the Authors

O. A. Beylerli
Bashkir State Medical University
Russian Federation

Beylerli Ozal A. – Рostgraduate Student of Urology Department

450008, 3, Lenina str., Ufa, Republic of Bashkortostan



I. F. Gareev
Bashkir State Medical University
Russian Federation

Gareev Ilgiz F. – Postgraduate Student, Department of Neurosurgery and Medical Rehabilitation 

450008, 3, Lenina str., Ufa, Republic of Bashkortostan



References

1. Gatta G, Ferrari A, Stiller CA, et al. Embryonal cancers in Europe. Eur J Cancer. 2012;48:1425-33. https://doi.org/10.1016/j.ejca.2011.12.027.

2. Zage PE, Kletzel M, Murray K, et al. Outcomes of the POG 9340/9341/9342 trials for children with high-risk neuroblastoma: A report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008;51:747-53.

3. Seeger RC, Reynolds CP. Treatment of high-risk solid tumors of childhood with intensive therapy and autologous bone marrow transplantation. PediatrClin North Am. 1991;38:393-424.

4. Park JR, Eggert A, Caron H. Neuroblastoma: Biology, prognosis, and treatment. PediatrClin North Am. 2008;55:97-120. https://doi.org/10.1016/j.pcl.2007.10.014.

5. Pearson AD, Pinkerton CR, Lewis IJ, et al. High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: A randomised trial. Lancet Oncol. 2008;9:247-56. https://doi.org/10.1016/S1470-2045(08)70069-X.

6. Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P, et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res. 2002;62:6462-6.

7. Jaboin J, Kim CJ, Kaplan DR, Thiele CJ. Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3’-kinase pathway. Cancer Res. 2002;62:6756-63.

8. Scala S, Wosikowski K, Giannakakou P, et al. Brainderived neurotrophic factor protects neuroblastoma cells from vinblastine toxicity. Cancer Res. 1996;56:3737-42.

9. Keshelava N, Zuo JJ, Chen P, et al. Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res. 2001;61:6185-93.

10. Castle VP, Heidelberger KP, Bromberg J, et al. Expression of the apoptosis-suppressing protein bcl-2, in neuroblastoma is associated with unfavorable histology and N-mycamplification. Am J Pathol. 1993;143:1543-50.

11. Hopkins-Donaldson S, Bodmer JL, Bourloud KB, et al. Loss of caspase 8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand induced apoptosis. Cancer Res. 2000;60:4315-9.

12. Goldstein LJ, Fojo AT, Ueda K, et al. Expression of the multidrug resistance, MDR1, gene in neuroblastomas. J ClinOncol. 1990;8:128-36. https://doi.org/10.1200/JCO.1990.8.1.128.

13. Norris MD, Bordow SB, Marshall GM, et al. Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma. N Engl J Med. 1996;334:231-8. https://doi.org/10.1056/NEJM199601253340405.

14. Yang Q, Kiernan CM, Tian Y, et al. Methylation of CASP8, DCR2, and HIN-1 in neuroblastoma is associated with poor outcome. Clin Cancer Res. 2007;13:3191-7. https://doi.org/10.1158/1078-0432.CCR-06-2846.

15. Buckley PG, Das S, Bryan K, et al. Genome-wide DNA methylation analysis of neuroblastic tumors reveals clinically relevant epigenetic events and largescaleepigenomic alterations localized to telomeric regions. Int J Cancer. 2011;128:2296-305. https://doi.org/10.1002/ijc.25584.

16. Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37:853-62. https://doi.org/10.1038/ng1598.

17. Grau E, Martinez F, Orellana C, et al. Epigenetic alterations in disseminated neuroblastomatumour cells: Influence of TMS1 gene hypermethylation in relapse risk in NB patients. J Cancer Res ClinOncol. 2010;136:1415-21. https://doi.org/10.1007/s00432-010-0796-9.

18. Charlet J, Schnekenburger M, Brown KW, Diederich M. DNA demethylation increases sensitivity of neuroblastoma cells to chemotherapeutic drugs. BiochemPharmacol. 2012;83:858-65. https://doi.org/10.1016/j.bcp.2012.01.009.

19. Stiborova M, Poljakova J, Eckschlager T, et al. DNA and histone deacetylases as targets for neuroblastoma treatment. InterdiscipToxicol. 2010;3:47-52. https://doi.org/10.2478/v10102-010-0010-6

20. Soriano A, Jubierre L, Almazan-Moga A, et al. MicroRNAs as pharmacological targets in cancer. Pharmacol Res. 2013;75:3- 14. https://doi.org/10.1016/j.phrs.2013.03.006.

21. Lin RJ, Lin YC, Chen J, et al. microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res. 2010;70:7841-50. https://doi.org/10.1158/0008-5472.

22. Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26:5017-22. https://doi.org/10.1038/sj.onc.1210293.

23. Raver-Shapira N, Marciano E, Meiri E, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26:731-43. https://doi.org/10.1016/j.molcel.2007.05.017.

24. Tivnan A, Orr WS, Gubala V, et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One. 2012;7:e38129. https://doi.org/10.1371/journal.pone.0038129.

25. Bray I, Tivnan A, Bryan K, et al. MicroRNA-542-5p as a novel tumor suppressor in neuroblastoma. Cancer Lett. 2011;303:56-64. https://doi.org/10.1016/j.canlet.2011.01.016.

26. Althoff K, Lindner S, Odersky A, et al. miR-542- 3p exerts tumor suppressive functions in neuroblastoma by downregulatingSurvivin. Int J Cancer. 2015;136:1308-20. https:// doi.org/10.1002/ijc.29091.

27. Buechner J, Tomte E, Haug BH, et al. Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplifiedneuroblastoma. Br J Cancer. 2011;105:296-303. https://doi.org/10.1038/bjc.2011.220.

28. Molenaar JJ, Domingo-Fernandez R, Ebus ME, et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat Genet. 2012;44:1199-206. https://doi.org/10.1038/ng.2436.

29. Lee JJ, Drakaki A, Iliopoulos D, Struhl K. MiR-27b targets PPAR-gamma to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene. 2012;31:3818-25. https://doi.org/10.1038/onc.2011.543.

30. Feng X, Wang Z, Fillmore R, et al. MiR 200, a new star miRNA in human cancer. Cancer Lett. 2014;344:166-73. https:// doi.org/10.1016/j.canlet.2013.

31. Gao SL, Wang LZ, Liu HY, et al. miR-200a inhibits tumor proliferation by targeting AP-2gamma in neuroblastoma cells. Asian Pac J Cancer Prev. 2014;15:4671-6. https://doi.org/10.7314/apjcp.2014.15.11.4671.

32. Zhang H, Qi M, Li S, et al. microRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Ther. 2012;11:1454-66. https:// doi.org/10.1158/1535-7163.MCT-12-0001.

33. Zhang H, Pu J, Qi T, et al. MicroRNA-145 inhibits the growth, invasion, metastasis and angiogenesis of neuroblastoma cells through targeting hypoxia-inducible factor 2 alpha. Oncogene. 2014;33:387-97. https://doi.org/10.1038/onc.2012.574.

34. Qiao J, Lee S, Paul P, et al. miR-335 and miR-363 regulation of neuroblastomatumorigenesis and metastasis. Surgery. 2013;154:226-33. https://doi.org/10.1016/j.surg.2013.04.005.

35. Lodrini M, Oehme I, Schroeder C, et al. MYCN and HDAC2 cooperate to repress miR-183 signaling in neuroblastoma. Nucleic Acids Res. 2013;41:6018-33. https://doi.org/10.1093/nar/gkt346.

36. Chakrabarti M, Banik NL, Ray SK. miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo. Exp Cell Res. 2013;319:1575-85. https://doi.org/10.1016/j.yexcr.2013.02.025.

37. Nadir Y, Brenner B. Heparanase multiple effects in cancer. Thromb Res. 2014;133Suppl 2:S90-4. https://doi.org/10.1016/ S0049-3848(14)50015-1.

38. Qu H, Zheng L, Pu J, et al. miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum Mol Genet. 2015;24:2539-51. https://doi.org/10.1093/hmg/ddv018.

39. Tweddle DA, Pearson AD, Haber M, et al. The p53 pathway and its inactivation in neuroblastoma. Cancer Lett. 2003;197:93-8. https://doi.org/10.1016/S0304-3835(03)00088-0

40. Swarbrick A, Woods SL, Shaw A, et al. miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplifiedneuroblastoma. NatMed. 2010;16:1134-40. https://doi.org/10.1038/nm.2227


Review

For citations:


Beylerli O.A., Gareev I.F. MicroRNA as therapeutic targets for neuroblastomas. Innovative Medicine of Kuban. 2019;(4):66-71. (In Russ.) https://doi.org/10.35401/2500-0268-2019-16-4-66-71

Views: 1887


ISSN 2541-9897 (Online)