Preview

Innovative Medicine of Kuban

Advanced search

Comparative analysis of the results using direct lateral interbody spondilodesis and transforaminal lumbar interbody spondilodesis in patients with degenerative diseases of the lumbar spine

https://doi.org/10.35401/2500-0268-2021-23-3-12-18

Abstract

Introduction Various spondylodesis techniques are used in patients with degenerative diseases of the lumbar spine, but the benefits of these techniques have not been proven.

Objective of the study was to assess the effect of the type of fusion on the incidence of implant instability and related revision surgeries.

Material and Methods This monocentric prospective study included 133 patients with degenerative stenosis of the lumbar spine and confirmed instability of spinal motion segments. Patients underwent transforaminal lumbar interbody fusion (TLIF) with a single cage or direct lateral interbody fusion (DLIF) using standard-sized cages. The conventional open technique was used to supplement TLIF with pedicle screws while percutaneous screw placement was applied in patients treated with DLIF. The duration of follow-up was 18 months. Fisher's exact test was used to assess differences in the incidence of fixator instability based on MSCT and revision interventions. Logistic regression was used to assess the association between potential risk factors and complication rates.

Results The use of DLIF detected by MSCT (32.9 vs 3.6%, p < 0.0001) resulted in a significant reduction in the incidence of screw instability and associated revision interventions (11.8 vs 0%, p = 0.0122). The results of logistic regression, taking into account factors such as bone density and the number of levels at which spondylodesis was performed, confirm the relationship between the reduced incidence of complications and the use of DLIF technology. Conclusion Using DLIF instead of TLIF in patients with degenerative stenosis at the lumbar spine level can lead to a significant reduction in the frequency of screw instability and associated revision surgeries.

About the Authors

A. E. Bokov
Privolzhsky Research Medical University
Russian Federation

Andrey E. Bokov, Cand. оf Sci. (Med.), Chief of Department of Oncology and Neurosurgery

Minin and Pozharskiy Square, 10/1, Nizhniy Novgorod, 603005



A. A. Bulkin
Privolzhsky Research Medical University
Russian Federation

Anatoliy A. Bulkin, Cand. оf Sci. (Med.), Neurosurgeon

Nizhniy Novgorod



S. Y. Kalinina
Privolzhsky Research Medical University
Russian Federation

Svetlana Y. Kalinina, Cand. оf Sci. (Med.), Neurosurgeon

Nizhniy Novgorod



A. V. Leontev
Privolzhsky Research Medical University
Russian Federation

Andrei V. Leontev, Neurosurgeon

Nizhniy Novgorod



S. G. Mlyavykh
Privolzhsky Research Medical University
Russian Federation

Sergey G. Mlyavykh, Cand. оf Sci. (Med.), Head of Institute of Traumatology and Orthopedics Neurosurgeon

Nizhniy Novgorod



References

1. Resnick DK, Watters WC, Sharan A, et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 9: lumbar fusion for stenosis with spondylolisthesis. J Neurosurg Spine. 2014;21:54–61. PMID: 24980586. https://doi.org/10.3171/2014.4.SPINE14274

2. Wang JC, Dailey AT, Mummaneni PV, et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 8: lumbar fusion for disc herniation and radiculopathy. J Neurosurg Spine. 2014;21:48–53. PMID: 24980585. https://doi.org/10.3171/2014.4.SPINE14271

3. Formica M, Quarto E, Zanirato A, et al. Lateral lumbar interbody fusion: what is the evidence of indirect neural decompression? A systematic review of the literature. HSS J. 2020;16(2):143–154. PMID: 32523482. PMCID: PMC7253558. https://doi.org/10.1007/s11420-019-09734-7

4. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ ATP, LLIF and ALIF. J Spine Surg. 2015;1(1):2–18. PMID: 27683674. PMCID: PMC5039869. https://doi.org/10.3978/j.issn.2414-469X.2015.10.05

5. Joseph JR, Smith BW, La Marca F, Park P. Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature. Neurosurg Focus. 2015;39(4):E4. PMID: 26424344. https://doi.org/10.3171/2015.7.FOCUS15278

6. Cho JY, Goh TS, Son SM, Kim DS, Lee JS. Comparison of anterior approach and posterior approach to instrumented interbody fusion for spondylolisthesis: a meta-analysis. World Neurosurg. 2019;129:e286–e293. PMID: 31129223. https://doi.org/10.1016/j.wneu.2019.05.130

7. Keorochana G, Setrkraising K, Woratanarat P, Arirachakaran A, Kongtharvonskul J. Clinical outcomes after minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion for treatment of degenerative lumbar disease: a systematic review and meta-analysis. Neurosurg Rev. 2018;41(3):755–770. PMID: 28013419. https://doi.org/10.1007/s10143-016-0806-8

8. Winebrake JP, Lovecchio F, Steinhaus M, Farmer J, Sama A. Wide variability in patient-reported outcomes measures after fusion for lumbar spinal stenosis: a systematic review. Global Spine J. 2020;10(2):209–215. PMID: 32206520. PMCID: PMC7076598. https://doi.org/10.1177/2192568219832853

9. Baber Z, Erdek MA. Failed back surgery syndrome: current perspectives. J Pain Res. 2016;9:979–987. PMID: 27853391. PMCID: PMC5106227. https://doi.org/10.2147/JPR.S92776

10. Clancy C, Quinn A, Wilson F. The aetiologies of failed back surgery syndrome: a systematic review. J Back Musculoskelet Rehabil. 2017;30(3):395–402. PMID: 27689601. https://doi.org/10.3233/BMR-150318

11. Zou D, Sun Z, Zhou S, Zhong W, Li W. Hounsfield units value is a better predictor of pedicle screw loosening than the T-score of DXA in patients with lumbar degenerative diseases. Eur Spine J. 2020;29(5):1105–1111. PMID: 32211997. https://doi.org/10.1007/s00586-020-06386-8

12. St Jeor JD, Jackson TJ, Xiong AE, et al. Average lumbar hounsfield units predicts osteoporosis-related complications following lumbar spine fusion. Global Spine J. 2020; 2192568220975365. PMID: 33222537. https://doi.org/10.1177/2192568220975365

13. Zhang T, Bai S, Dokos S, Cheung JP, Diwan AD. XLIF interbody cage reduces stress and strain of fixation in spinal reconstructive surgery in comparison with TLIF cage with bilateral or unilateral fixation: a computational analysis. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:1887–1890. PMID: 31946266. https://doi.org/10.1109/EMBC.2019.8856592

14. Lu T, Lu Y. Comparison of biomechanical performance among posterolateral fusion and transforaminal, extreme, and oblique lumbar interbody fusion: a finite element analysis. World Neurosurg. 2019;129:e890–e899. PMID: 31226452. https://doi.org/10.1016/j.wneu.2019.06.074

15. Leone A, Guglielmi G, Cassar-Pullicino VN, Bonomo L. Lumbar intervertebral instability: a review. Radiology. 2007;245(1):62–77. PMID: 17885181. https://doi.org/10.1148/radiol.2451051359

16. Spiker WR, Goz V, Brodke DS. Lumbar interbody fusions for degenerative spondylolisthesis: review of techniques, indications, and outcomes. Global Spine J. 2019;9(1):77– 84. PMID: 30775212. PMCID: PMC6362558. https://doi.org/10.1177/2192568217712494

17. Galbusera F, Volkheimer D, Reitmaier S, Berger-Roscher N, Kienle A, Wilke HJ. Pedicle screw loosening: a clinically relevant complication? Eur Spine J. 2015;24(5):1005–1016. PMID: 25616349. https://doi.org/10.1007/s00586-015-3768-6

18. Wu ZX, Gong FT, Liu L, et al. A comparative study on screw loosening in osteoporotic lumbar spine fusion between expandable and conventional pedicle screws. Arch Orthop Trauma Surg. 2012;132(4):471–476. PMID: 22146812. https://doi.org/10.1007/s00402-011-1439-6

19. Bredow J, Boese CK, Werner CM, et al. Predictive validity of preoperative CT scans and the risk of pedicle screw loosening in spinalsurgery. Arch Orthop Trauma Surg. 2016;136(8):1063–1067. PMID: 27312862. https://doi.org/10.1007/s00402-016-2487-8

20. Khan SN, Warkhedkar RM, Shyam AK. Analysis of hounsfield unit of human bones for strength evaluation. Procedia Materials Science. 2014;6:512–519. https://doi.org/10.1016/j.mspro.2014.07.065

21. Schwaiger BJ, Gersing AS, Baum T, Noël PB, Zimmer C, Bauer JS. Bone mineral density values derived from routine lumbar spine multidetector row CT predict osteoporotic vertebral fractures and screw loosening. AJNR Am J Neuroradiol. 2014;35(8):1628– 1633. PMID: 24627455. PMCID: PMC7964446. https://doi.org/10.3174/ajnr.A3893

22. Zaidi Q, Danisa OA, Cheng W. Measurement techniques and utility of hounsfield unit values for assessment of bone quality prior to spinal instrumentation: a review of current literature. Spine. 2019;44(4):E239–E244. PMID: 30063528. https://doi.org/10.1097/BRS.0000000000002813

23. Peh W. Image-guided facet joint injection. Biomed Imaging Interv J. 2011;7(1):e4. PMID: 21655113. PMCID: PMC3107686.

24. Bokov A, Isrelov A, Skorodumov A, Aleynik A, Simonov A, Mlyavykh S. An analysis of reasons for failed back surgery syndrome and partial results after different types of surgical lumbar nerve root decompression. Pain Physician. 2011;14(6):545–557. PMID: 22086096.

25. Mizuno T, Kasai Y, Sakakibara T, Yoshikawa T, Inaba T. Biomechanical study of rotational micromovement of the pedicle screw. Springerplus. 2016;5(1):1016. PMID: 27441135. PMCID: PMC4938808. https://doi.org/10.1186/s40064-016-2694-3

26. Cadman J, Sutterlin C. 3rd, Dabirrahmani D, Appleyard R. The importance of loading the periphery of the vertebral endplate. J Spine Surg. 2016;2(3):178–184. PMID: 27757430. PMCID: PMC5067271. https://doi.org/10.21037/jss.2016.09.08

27. Hiyama A, Katoh H, Sakai D, Tanaka M, Sato M, Watanabe M. Short-term comparison of preoperative and postoperative pain after indirect decompression surgery and direct decompression surgery in patients with degenerative spondylolisthesis. Sci Rep. 2020;10(1):18887. PMID: 33144633. PMCID: PMC7642323. https://doi.org/10.1038/s41598-020-76028-y

28. Verla T, Winnegan L, Mayer R, et al. Minimally invasive transforaminal versus direct lateral lumbar interbody fusion: effect on return to work, narcotic use, and quality of life. World Neurosurg. 2018;116:e321–e328. PMID: 29738856. https://doi.org/10.1016/j.wneu.2018.04.201

29. Lee YS, Kim YB, Park SW, Chung C. Comparison of transforaminal lumbar interbody fusion with direct lumbar interbody fusion: clinical and radiological results. J Korean Neurosurg Soc. 2014;56(6):469–474. PMID: 25628805. PMCID: PMC4303721. https://doi.org/10.3340/jkns.2014.56.6.4


Review

For citations:


Bokov A.E., Bulkin A.A., Kalinina S.Y., Leontev A.V., Mlyavykh S.G. Comparative analysis of the results using direct lateral interbody spondilodesis and transforaminal lumbar interbody spondilodesis in patients with degenerative diseases of the lumbar spine. Innovative Medicine of Kuban. 2021;(3):12-18. (In Russ.) https://doi.org/10.35401/2500-0268-2021-23-3-12-18

Views: 708


ISSN 2541-9897 (Online)