Ultrasound parameters for evaluating local hemodynamics of internal carotid artery anomalies
https://doi.org/10.35401/2541-9897-2023-26-2-40-46
Abstract
Background: Despite the high prevalence of internal carotid artery (ICA) anomalies, there is still no consensus on which parameters should be used to evaluate their local hemodynamics and what significance each parameter holds.
Objective: To determine the significance of various ultrasound parameters for evaluating the local hemodynamics of ICA anomalies.
Materials and methods: In our cross-sectional observational study 427 outpatients underwent carotid ultrasound. To evaluate the significance of various ultrasound parameters for local hemodynamics assessment, we used a cluster analysis for the entire sample (n = 386), taking into account the deformation coefficient, angle of deformation, blood flow turbulence at the site of maximum deformation, and peak blood flow velocity at the site of maximum deformation. Based on the cluster analysis results, we did a discriminant function analysis.
Results: During the clustering of patients from the total sample (n = 386), 3 clusters were formed. We did a discriminant function analysis to evaluate the indicators used. We found that all of them had a small Wilks’ Lambda indicating their greater discriminatory ability. The deformation coefficient was the most significant parameter as it had the smallest value (0.26). “Tolerance” analysis showed that the deformation coefficient is the most independent indicator (0.67).
Conclusions: Our study showed that the most significant and independent parameter for evaluating the local hemodynamics of ICA anomalies is the deformation coefficient, with the blood flow turbulence being the least significant parameter.
About the Authors
A. V. PomortsevRussian Federation
Alexey V. Pomortsev, Dr. Sci. (Med.), Professor, Head of Diagnostic Radiology Department No. 1
Krasnodar
K. A. Bagdasaryan
Russian Federation
Karapet A. Bagdasaryan, Postgraduate Student (correspondence course), Diagnostic Radiology Department No. 1; Ultrasonographer
ulitsa M. Sedina 4, Krasnodar, 350063, Russian Federation
A. N. Sencha
Russian Federation
Alexander N. Sencha, Dr. Sci. (Med.), Head of Imaging Division
Moscow
References
1. Public Health in Russia. 2019: Statistical Compendium. Federal State Statistics Service; 2019. (In Russ.).
2. Savina AA, Feyginova SI. Dynamics in incidence of diseases of the circulatory system among adults in the Russian Federation in 2007-2019. Social Aspects of Population Health. 2021;67(2):1. (In Russ.). https://doi.org/10.21045/2071-5021-2021-67-2-1
3. Vaysman DSh, Aleksandrova GA, Leonov SA, Savina AA. The accuracy of indicators and the structure of causes of death from diseases of the circulatory system in the Russian Federation in international comparisons. Current Problems of Health Care and Medical Statistics. 2019;(3):69–84. (In Russ.).
4. Weshkina LP, Nosova MV, Usanova TA. Risk factors for ischemic stroke with a gender features. Norwegian Journal of Development of the International Science. 2019;(3–1):3–6. (In Russ.).
5. Benson JC, Brinjikji W, Messina SA, Lanzino G, Kallmes DF. Cervical internal carotid artery tortuosity: a morphologic analysis of patients with acute ischemic stroke. Interv Neuroradiol. 2020; 26(2):216–221. PMID: 31766962. PMCID: PMC7507229. https://doi.org/10.1177/1591019919891295
6. Noh SM, Kang HG. Clinical significance of the internal carotid artery angle in ischemic stroke. Sci Rep. 2019;9(1):4618. PMID: 30905965. PMCID: PMC6431677. https://doi.org/10.1038/s41598-018-37783-1
7. Strecker C, Krafft AJ, Kaufhold L, et al. Carotid geometry is an independent predictor of wall thickness – a 3D cardiovascular magnetic resonance study in patients with high cardiovascular risk. J Cardiovasc Magn Reson. 2020;22(1):67. PMID: 32912285. PMCID: PMC7488078. https://doi.org/10.1186/s12968-020-00657-5
8. Aber A, Howard A, Woods HB, Jones G, Michaels J. Impact of carotid artery stenosis on quality of life: a systematic review. Patient. 2019;12(2):213–222. PMID: 30328068. https://doi.org/10.1007/s40271-018-0337-1
9. Baradaran H, Demissie S, Himali JJ, et al. The progression of carotid atherosclerosis and imaging markers of dementia. Alzheimers Dement (N Y). 2020;6(1):e12015. PMID: 32296732. PMCID: PMC7154591. https://doi.org/10.1002/trc2.12015
10. Kliś KM, Krzyżewski RM, Kwinta BM, Stachura K, Gąsowski J. Tortuosity of the internal carotid artery and its clinical significance in the development of aneurysms. J Clin Med. 2019;8(2):237. PMID: 30759737. PMCID: PMC6406528. https://doi.org/10.3390/jcm8020237
11. Kazantsev AN, Vinogradov RA, Erofeev AA, et al. The problem of the choice of revascularization in combined lesion of the coronary and carotid arteries. Review of current recommendations and article series. Russian Sklifosovsky Journal “Emergency Medical Care”. 2022;11(1):147–157. (In Russ.). https://doi.org/10.23934/2223-9022-2022-11-1-147-157
12. Gorican K, Chochola M, Kocik M, Zak A. Diagnostic criteria for the determination of clinically significant internal carotid artery stenosis using duplex ultrasound. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020;164(3):255–260. PMID: 31219103. https://doi.org/10.5507/bp.2019.029
13. Saxena A, Ng EYK, Lim ST. Imaging modalities to diagnose carotid artery stenosis: progress and prospect. Biomed Eng Online. 2019;18(1):66. PMID: 31138235. PMCID: PMC6537161. https://doi.org/10.1186/s12938-019-0685-7
14. Brouwers JJWM, Jiang JFY, Feld RT, et al. A new Doppler-derived parameter to quantify internal carotid artery stenosis: maximal systolic acceleration. Ann Vasc Surg. 2022;81:202–210. PMID: 34780944. https://doi.org/10.1016/j.avsg.2021.09.056
15. Welby JP, Kim ST, Carr CM, et al. Carotid artery tortuosity is associated with connective tissue diseases. AJNR Am J Neuroradiol. 2019;40(10):1738–1743. PMID: 31558499. PMCID: PMC7028570. https://doi.org/10.3174/ajnr.A6218
16. Dilba K, van Dam-Nolen DHK, Crombag GAJC, et al. Dolichoarteriopathies of the extracranial internal carotid artery: The Plaque At RISK study. Eur J Neurol. 2021;28(9):3133–3138. PMID: 34133824. PMCID: PMC8457194. https://doi.org/10.1111/ene.14982
17. Valvano A, Bosso G, Apuzzi V, et al. Long-term followup in high risk hypertensive patients with carotid dolicoarteriopathies. Int Angiol. 2020;39(1):24–28. PMID: 31782281. https://doi.org/10.23736/S0392-9590.19.04229-9
18. Sacco S, Totaro R, Baldassarre M, Carolei A. Morphological variations of the internal carotid artery: prevalence, characteristics and association with cerebrovascular disease. Int J Angiol. 2007;16(2):59–61. PMID: 22477273. PMCID: PMC2733006. https://doi.org/10.1055/s-0031-1278249
19. Pomortsev AV, Baghdasaryan KA. Additional ultrasound capabilities for local haemodynamically significant carotid deformity: a one-stage observational study. Kuban Scientific Medical Bulletin. 2022;29(3):30–45. (In Russ.). https://doi.org/10.25207/1608-6228-2022-29-3-30-45
20. Kulikov VP. Fundamentals of Vascular Ultrasound. Vidar-M; 2015. (In Russ.).
21. Kaplan ML, Bontsevich DN. Effect of the form of pathological tortuosity of the internal carotid artery on cerebral haemodynamics. Angiology and Vascular Surgery. 2013;19(3):102–106. (In Russ.).
22. Bokeriya LA, Pokrovskii AV, Sokurenko GYu, et al. National Guidelines for The Management of Patients With Brachiocephalic Artery Diseases. MZ RF; 2013. (In Russ.).
23. Pokrovsky AV, Beloyartsev DF, Timina IE, Adyrkhaev ZA. When should a pathological deformity of the internal carotid artery be operated on? Angiology and Vascular Surgery. 2010;16(4):116–124. (In Russ.).
Review
For citations:
Pomortsev A.V., Bagdasaryan K.A., Sencha A.N. Ultrasound parameters for evaluating local hemodynamics of internal carotid artery anomalies. Innovative Medicine of Kuban. 2023;(2):40-46. (In Russ.) https://doi.org/10.35401/2541-9897-2023-26-2-40-46