Preview

Инновационная медицина Кубани

Расширенный поиск

Биохимические аспекты остеорепаративных эффектов магния

https://doi.org/10.35401/2541-9897-2023-26-2-103-108

Полный текст:

Аннотация

Существующий научный и практический интерес к имплантам на основе магния (Mg2+) в значительной степени связан с его биоразлагаемостью и способностью улучшать заживление и формирование костей. Однако основной механизм того как магний регулирует остеогенез до сих пор неясен.

В обзоре рассмотрены клеточные и молекулярные механизмы, лежащие в основе влияния ионов магния на рост новой кости при имплантации устройств на основе этого химического элемента. Представлены данные о Mg-индуцированной активации канонического сигнального пути Wnt/β-Catenin в стромальных клетках костного мозга человека, что, в свою очередь, способствует их дифференцировке в остеобласты и тем самым обеспечивает остеогенный эффект и восстановление костных дефектов. Приведена информация о роли молекулярных механизмов, ответственных за остеопромоторное действие Mg2+, связанных с уникальными катионными каналами TRPM7, опосредующих приток Mg2+, необходимого для влияния фактор роста тромбоцитов, а также на пролиферацию, адгезию и миграцию остеобластов человека и обеспечение Mg2+-ассоциированных остеорегенераторных эффектов.

Кроме того, в обзоре рассмотрено влияние Mg2+ на механизмы внутриклеточной передачи сигналов, экспрессию фактора роста эндотелия сосудов, фактора, индуцируемого гипоксией (HIF)-2α, и гамма-коактиватора рецептора – 1-альфа (PGC-1α), активируемого пролифератором пероксисом.

Таким образом, Mg2+ может способствовать регенерации кости за счет усиления выработки коллагена типа X и фактора роста эндотелия сосудов остеогенными клетками в костной ткани.

Об авторах

Л. М. Бараева
Кубанский государственный медицинский университет
Россия

Бараева Лилия Максимовна, соискатель кафедры фундаментальной и клинической биохимии

350063, Краснодар, ул. им. М. Седина 4



А. Ш. Байда
Кубанский государственный медицинский университет
Россия

Байда Анна Шамильевна, аспирант кафедры фундаментальной и клинической биохимии

Краснодар



И. М. Быков
Кубанский государственный медицинский университет
Россия

Быков Илья Михайлович, д. м. н., профессор, заведующий кафедрой фундаментальной и клинической биохимии

Краснодар



А. Н. Курзанов
Кубанский государственный медицинский университет
Россия

Курзанов Анатолий Николаевич, д. м. н., профессор кафедры фундаментальной и клинической биохимии

Краснодар



О. В. Цымбалов
Кубанский государственный медицинский университет
Россия

Цымбалов Олег Владимирович, д. м. н., профессор кафедры хирургической стоматологии и челюстно-лицевой хирургии

Краснодар



И. И. Павлюченко
Кубанский государственный медицинский университет
Россия

Павлюченко Иван Иванович, д. м. н., профессор, заведующий кафедрой биологии с курсом медицинской генетики

Краснодар



А. П. Сторожук
Кубанский государственный медицинский университет; Родильный дом г. Краснодара
Россия

Сторожук Александр Петрович, д. м. н., главный врач; профессор кафедры фундаментальной и клинической биохимии

Краснодар



Список литературы

1. Schmitz C, Deason F, Perraud AL. Molecular components of vertebrate Mg2+-homeostasis regulation. Magnes Res. 2007;20(1):6–18. PMID: 17536484.

2. Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22(10):1160–1169. PMID: 27571347. PMCID: PMC5293535. https://doi.org/10.1038/nm.4162

3. Jähn K, Saito H, Taipaleenmäki H, et al. Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice. Acta Biomater. 2016;36:350–360. PMID: 27039975. https://doi.org/10.1016/j.actbio.2016.03.041

4. Chaya A, Yoshizawa S, Verdelis K, et al. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater. 2015;18:262–269. PMID: 25712384. https://doi.org/10.1016/j.actbio.2015.02.010

5. Laires MJ, Monteiro CP, Bicho M. Role of cellular magnesium in health and human disease. Front Biosci. 2004;9:262–276. PMID: 14766364. https://doi.org/10.2741/1223

6. Zhang X, Huang P, Jiang G, et al. A novel magnesium ionincorporating dual-crosslinked hydrogel to improve bone scaffoldmediated osteogenesis and angiogenesis. Mater Sci Eng C Mater Biol Appl. 2021;121:111868. PMID: 33579495. https://doi.org/10.1016/j.msec.2021.111868

7. Choi S, Kim KJ, Cheon S, et al. Biochemical activity of magnesium ions on human osteoblast migration. Biochem Biophys Res Commun. 2020;531(4):588–594. PMID: 32814632. https://doi.org/10.1016/j.bbrc.2020.07.057

8. Lin S, Yang G, Jiang F, et al. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration. Adv Sci (Weinh). 2019;6(12):1900209. PMID: 31380166. PMCID: PMC6662069. https://doi.org/10.1002/advs.201900209

9. Wang J, Ma XY, Feng YF, et al. Magnesium ions promote the biological behaviour of rat calvarial osteoblasts by activating the PI3K/Akt signalling pathway. Biol Trace Elem Res. 2017;179(2):284–293. PMID: 28205079. https://doi.org/10.1007/s12011-017-0948-8

10. Chen S, Guo Y, Liu R, et al. Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloids Surf B Biointerfaces. 2018;164:58–69. PMID: 29413621. https://doi.org/10.1016/j.colsurfb.2018.01.022

11. Aubin JE. Advances in the osteoblast lineage. Biochem Cell Biol. 1998;76(6):899–910. PMID: 10392704.

12. Mehrotra M, Krane SM, Walters K, Pilbeam C. Differential regulation of platelet-derived growth factor stimulated migration and proliferation in osteoblastic cells. J Cell Biochem. 2004;93(4):741–752. PMID: 15660418. PMID: 15660418. https://doi.org/10.1002/jcb.20138

13. Centrella M, McCarthy TL, Canalis E. Platelet-derived growth factor enhances deoxyribonucleic acid and collagen synthesis in osteoblast-enriched cultures from fetal rat parietal bone. Endocrinology. 1989;125(1):13–19. PMID: 2737139. https://doi.org/10.1210/endo-125-1-13

14. Pfeilschifter J, Oechsner M, Naumann A, Gronwald RG, Minne HW, Ziegler R. Stimulation of bone matrix apposition in vitro by local growth factors: a comparison between insulin-like growth factor I, platelet-derived growth factor, and transforming growth factor beta. Endocrinology. 1990;127(1):69–75. PMID: 2361486. https://doi.org/10.1210/endo-127-1-69

15. Tanaka H, Wakisaka A, Ogasa H, Kawai S, Liang CT. Effect of IGF-I and PDGF administered in vivo on the expression of osteoblast-related genes in old rats. J Endocrinol. 2002;174(1):63–70. PMID: 12098664. https://doi.org/10.1677/joe.0.1740063

16. Rude RK, Kirchen ME, Gruber HE, Meyer MH, Luck JS, Crawford DL. Magnesium deficiency-induced osteoporosis in the rat: uncoupling of bone formation and bone resorption. Magnes Res. 1999;12(4):257–67. PMID: 10612083.

17. Carpenter TO, Mackowiak SJ, Troiano N, Gundberg CM. Osteocalcin and its message: relationship to bone histology in magnesium-deprived rats. Am J Physiol. 1992;263(1 Pt 1):E107–E114. PMID: 1636687. https://doi.org/10.1152/ajpendo.1992.263.1.E107

18. Creedon A, Flynn A, Cashman K. The effect of moderately and severely restricted dietary magnesium intakes on bone composition and bone metabolism in the rat. Br J Nutr. 1999;82(1):63–71. PMID: 10655958. https://doi.org/10.1017/s0007114599001130

19. Abed E, Moreau R. Importance of melastatin-like transient receptor potential 7 and cations (magnesium, calcium) in human osteoblast-like cell proliferation. Cell Prolif. 2007;40(6):849–865. PMID: 18021175. PMCID: PMC6495302. https://doi.org/10.1111/j.1365-2184.2007.00476.x

20. Fleig A, Penner R. The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci. 2004;25(12):633–639. PMID: 15530641. https://doi.org/10.1016/j.tips.2004.10.004

21. Harteneck C. Function and pharmacology of TRPM cation channels. Naunyn Schmiedebergs Arch Pharmacol. 2005; 371(4):307–314. PMID: 15843919. https://doi.org/10.1007/s00210-005-1034-x

22. Runnels LW. TRPM6 and TRPM7: A Mul-TRP-PLIK-cation of channel functions. Curr Pharm Biotechnol. 2011;12(1):42–53. PMID: 20932259. PMCID: PMC3514077. https://doi.org/10.2174/138920111793937880

23. Krapivinsky G, Krapivinsky L, Manasian Y, Clapham DE. The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell. 2014;157(5):1061–1072. PMID: 24855944. PMCID: PMC4156102. https://doi.org/10.1016/j.cell.2014.03.046

24. Abed E, Martineau C, Moreau R. Role of melastatin transient receptor potential 7 channels in the osteoblastic differentiation of murine MC3T3 cells. Calcif Tissue Int. 2011;88(3):246–253. PMID: 21207015. https://doi.org/10.1007/s00223-010-9455-z

25. Abed E, Moreau R. Importance of melastatin-like transient receptor potential 7 and magnesium in the stimulation of osteoblast proliferation and migration by platelet-derived growth factor. Am J Physiol Cell Physiol. 2009;297(2):C360–C368. PMID: 19474290. https://doi.org/10.1152/ajpcell.00614.2008

26. Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507(7492):323–328. PMID: 24646994. PMCID: PMC4943525. https://doi.org/10.1038/nature13145

27. Maes C, Goossens S, Bartunkova S, et al. Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. EMBO J. 2010;29(2):424–441. PMID: 20010698. PMCID: PMC2824461. https://doi.org/10.1038/emboj.2009.361

28. Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell. 2010;19(2):329–344. PMID: 20708594. PMCID: PMC3540406. https://doi.org/10.1016/j.devcel.2010.07.010

29. Lee JW, Han HS, Han KJ, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci U S A. 2016;113(3):716–721. PMID: 26729859. PMCID: PMC4725539. https://doi.org/10.1073/pnas.1518238113

30. Riddle RC, Khatri R, Schipani E, Clemens TL. Role of hypoxia-inducible factor-1alpha in angiogenic-osteogenic coupling. J Mol Med (Berl). 2009;87(6):583–590. PMID: 19415227. PMCID: PMC3189695. https://doi.org/10.1007/s00109-009-0477-9

31. Han HS, Jun I, Seok HK, et al. Biodegradable magnesium alloys promote angio-osteogenesis to enhance bone repair. Adv Sci (Weinh). 2020;7(15):2000800. PMID: 32775162. PMCID: PMC7404158. https://doi.org/10.1002/advs.202000800

32. Hung CC, Chaya A, Liu K, Verdelis K, Sfeir C. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater. 2019;98:246–255. PMID: 31181262. https://doi.org/10.1016/j.actbio.2019.06.001

33. Meng Z, Feng G, Hu X, Yang L, Yang X, Jin Q. SDF factor- 1α promotes the migration, proliferation, and osteogenic differentiation of mouse bone marrow mesenchymal stem cells through the Wnt/β-catenin pathway. Stem Cells Dev. 2021;30(2):106–117. PMID: 33234049. https://doi.org/10.1089/scd.2020.0165

34. Zhao W, Jin K, Li J, Qiu X, Li S. Delivery of stromal cell-derived factor 1α for in situ tissue regeneration. J Biol Eng. 2017;11(1):22. PMID: 28670340. PMCID: PMC5492719. https://doi.org/10.1186/s13036-017-0058-3

35. Cencioni C, Capogrossi MC, Napolitano M. The SDF-1/CXCR4 axis in stem cell preconditioning. Cardiovasc Res. 2012;94(3):400–407. PMID: 22451511. https://doi.org/10.1093/cvr/cvs132

36. Li L, Liu X, Gaihre B, et al. SDF-1α/OPF/BP composites enhance the migrating and osteogenic abilities of mesenchymal stem cells. Stem Cells Int. 2021;2021:1938819. PMID: 34434236. PMCID: PMC8380507. https://doi.org/10.1155/2021/1938819

37. Liang Q, Du L, Zhang R, Kang W, Ge S. Stromal cellderived factor-1/Exendin-4 cotherapy facilitates the proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells in vitro and promotes periodontal bone regeneration in vivo. Cell Prolif. 2021;54(3):e12997. PMID: 33511708. PMCID: PMC7941242. https://doi.org/10.1111/cpr.12997

38. Marquez-Curtis LA, Janowska-Wieczorek A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. Biomed Res Int. 2013;2013:561098. PMID: 24381939. PMCID: PMC3870125. https://doi.org/10.1155/2013/561098

39. Xu M, Wei X, Fang J, Xiao L. Combination of SDF-1 and bFGF promotes bone marrow stem cell-mediated periodontal ligament regeneration. Biosci Rep. 2019;39(12):BSR20190785. PMID: 31789340. PMCID: PMC6923350. https://doi.org/10.1042/BSR20190785

40. Hosogane N, Huang Z, Rawlins BA, et al. Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells. Int J Biochem Cell Biol. 2010;42(7):1132–1141. PMID: 20362069. PMCID: PMC2992806. https://doi.org/10.1016/j.biocel.2010.03.020

41. Xia B, Deng Y, Lv Y, Chen G. Stem cell recruitment based on scaffold features for bone tissue engineering. Biomater Sci. 2021;9(4):1189–1203. PMID: 33355545. https://doi.org/10.1039/d0bm01591a

42. Bai X, Gao M, Syed S, Zhuang J, Xu X, Zhang XQ. Bioactive hydrogels for bone regeneration. Bioact Mater. 2018;3(4):401–417. PMID: 30003179. PMCID: PMC6038268. https://doi.org/10.1016/j.bioactmat.2018.05.006

43. Xiao M, Qiu J, Kuang R, Zhang B, Wang W, Yu Q. Synergistic effects of stromal cell-derived factor-1α and bone morphogenetic protein-2 treatment on odontogenic differentiation of human stem cells from apical papilla cultured in the VitroGel 3D system. Cell Tissue Res. 2019;378(2):207–220. PMID: 31152245. https://doi.org/10.1007/s00441-019-03045-3

44. Holloway JL, Ma H, Rai R, Hankenson KD, Burdick JA. Synergistic effects of SDF-1α and BMP-2 delivery from proteolytically degradable hyaluronic acid hydrogels for bone repair. Macromol Biosci. 2015;15(9):1218–1223. PMID: 26059079. PMCID: PMC4558375. https://doi.org/10.1002/mabi.201500178

45. Li Z, Lin H, Shi S, et al. Controlled and sequential delivery of stromal derived factor-1 α (SDF-1α) and magnesium ions from bifunctional hydrogel for bone regeneration. Polymers (Basel). 2022;14(14):2872. PMID: 35890649. PMCID: PMC9315491. https://doi.org/10.3390/polym14142872

46. Yoshizawa S, Brown A, Barchowsky A, Sfeir C. Role of magnesium ions on osteogenic response in bone marrow stromal cells. Connect Tissue Res. 2014;55(Suppl 1):155–159. PMID: 25158202. https://doi.org/10.3109/03008207.2014.923877

47. Yoshizawa S, Brown A, Barchowsky A, Sfeir C. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 2014;10(6):2834–2842. PMID: 24512978. https://doi.org/10.1016/j.actbio.2014.02.002

48. Qi T, Weng J, Yu F, et al. Insights into the role of magnesium ions in affecting osteogenic differentiation of mesenchymal stem cells. Biol Trace Elem Res. 2021;199(2):559–567. PMID: 32449009. https://doi.org/10.1007/s12011-020-02183-y

49. Zhou CC, Wu ZP, Zou SJ. The study of signal pathway regulating the osteogenic differentiation of bone marrow mesenchymal stem cells. Sichuan Da Xue Xue Bao Yi Xue Ban. 2020;51(6):777–782. (In Chinese). PMID: 33236600.


Рецензия

Для цитирования:


Бараева Л.М., Байда А.Ш., Быков И.М., Курзанов А.Н., Цымбалов О.В., Павлюченко И.И., Сторожук А.П. Биохимические аспекты остеорепаративных эффектов магния. Инновационная медицина Кубани. 2023;(2):103-108. https://doi.org/10.35401/2541-9897-2023-26-2-103-108

For citation:


Baraeva L.M., Baida A.S., Bykov I.M., Kurzanov A.N., Tsymbalov O.V., Pavlyuchenko I.I., Storozhuk A.P. Biochemical aspects of magnesium-enhanced bone regeneration. Innovative Medicine of Kuban. 2023;(2):103-108. (In Russ.) https://doi.org/10.35401/2541-9897-2023-26-2-103-108

Просмотров: 90


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 2541-9897 (Online)