Protective Potential of Sodium-Glucose Cotransporter 2 Inhibitors in Internal Medicine (Part 1)
https://doi.org/10.35401/2541-9897-2024-9-4-126-135
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have emerged as a revolutionary class of drugs with far-reaching protective effects in multiple organs. The protective potential of SGLT2i is much broader than that of the classical concept of glucose control and consists of an entire conglomerate of associated pleiotropic effects. This study aims to provide a descriptive review of the pleiotropic therapeutic potential of SGLT2i. The first part of the literature review examined the use of SGLT2i in cardiology and nephrology. The use of SGLT2i represents an innovative approach to improving patients’ quality of life and course of heart failure and chronic kidney disease, regardless of left ventricular ejection fraction and type 2 diabetes.
About the Authors
A. A. AvagimyanIslamic Republic of Iran
Ashot A. Avagimyan - Cand. Sci. (Med.), Researcher, Institute of Cardiovascular Research, Isfahan University of Medical Sciences (Isfahan, Iran); Doctoral Candidate, Researcher, Department of Evidence-Based Medicine, Institute of Medicine, Patrice Lumumba Peoples’ Friendship University of Russia.
Mushtaq 3rd St, Isfahan, 8158388994
M. Sheibani
Islamic Republic of Iran
Mohammad Sheibani - PhD, Assistant Professor at the Department of Pharmacology, Researcher at Razi Drug Research Institute, School of Medicine, Iran University of Medical Sciences.
Tehran
A. I. Trofimenko
Russian Federation
Artem I. Trofimenko - Cand. Sci. (Med.), Associate Professor at the Pathological Physiology Department, Kuban State Medical University.
Krasnodar
E. E. Lysov
Russian Federation
Evgenii E. Lysov - Assistant Professor at the Pathological Physiology Department, Kuban State Medical University.
Krasnodar
F. M. Khamidova
Uzbekistan
Farida M. Khamidova - Dr. Sci. (Med.), Associate Professor, Head of the Pathological Anatomy Department, Samarkand State Medical University.
Samarkand
A. Z. Aznauryan
Armenia
Anahit Z. Aznauryan - Cand. Sci. (Bio.), Associate Professor at the Histology Department, Yerevan State Medical University after M. Heratsi.
Yerevan
L. M. Sukiasyan
Armenia
Lilit M. Sukiasyan - Cand. Sci. (Bio.), Researcher, Central Research Laboratory, Yerevan State Medical University after M. Heratsi.
Yerevan
K. T. Sahakyan
Armenia
Karmen T. Sahakyan - Dr. Sci. (Bio.), Professor, Head of the Histology Department, Yerevan State Medical University after M. Heratsi.
Yerevan
T. R. Gevorgyan
Armenia
Tamara R. Gevorgyan - Cand. Sci. (Bio.), Associate Professor at the Pediatric Ophthalmology Department, Yerevan State Medical University after M. Heratsi.
Yerevan
M. R. Tatoyan
Armenia
Marina R. Tatoyan - Dr. Sci. (Bio.), Professor at the Histology Department, Yerevan State Medical University after M. Heratsi.
Yerevan
G. L. Mkrtchyan
Armenia
Gayane L. Mkrtchyan - Cand. Sci. (Bio.), Associate Professor at the Histology Department, Yerevan State Medical University after M. Heratsi.
Yerevan
G. L. Meltonyan
Armenia
Goharik L. Meltonyan - Cand. Sci. (Bio.), Associate Professor at the Histology Department, Yerevan State Medical University after M. Heratsi.
Yerevan
A. R. Petrosyan
Armenia
Anna R. Petrosyan - Lecturer at the Department of Pathological Anatomy and Clinical Morphology, Yerevan State Medical University after M. Heratsi.
Yerevan
L. A. Martemyanova
Belarus
Ludmila A. Martemyanova - Cand. Sci. (Med.), Associate Professor, Head of the Pathological Anatomy Department, Gomel State Medical University.
Gomel
R. R. Petrosyan
Lebanon
Ruzanna R. Petrosyan - PhD, MHPE, Assistant Professor (Anatomy), Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University.
Beirut
O. I. Urazova
Russian Federation
Olga I. Urazova - Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Pathophysiology Department, Siberian State Medical University.
Tomsk
N. V. Pogosova
Russian Federation
Nana V. Pogosova - Dr. Sci. (Med.), Professor, Deputy General Director for Science and Preventive Cardiology, National Medical Research Centre of Cardiology named after Academician Chazov; Head of the Department of Evidence-Based Medicine, Institute of Medicine, Patrice Lumumba Peoples’ Friendship University of Russia.
Moscow
N. Sarrafzadegan
Islamic Republic of Iran
Nizal Sarrafzadegan - PhD, Distinguished Professor, Director of the Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences.
Isfahan
References
1. Idowu A, Adebolu O, Wattanachayakul P, et al. Cardiovascular outcomes of sodium-glucose Co-transporter 2 inhibitors use after myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Curr Probl Cardiol. 2024;49(8):102648. PMID: 38759767. https://doi.org/10.1016/j.cpcardiol.2024.102648
2. Patoulias D. SGLT-2 inhibitors beneficial effects on ventricular repolarization may be protective against atrial fibrillation occurrence. Acta Cardiol Sin. 2021;37(3):323. PMID: 33976519. PMCID: PMC8107699. https://doi.org/10.6515/ACS.202105_37(3).20210313A
3. Jasleen B, Vishal GK, Sameera M, et al. Sodium-glucose cotransporter 2 (SGLT2) inhibitors: benefits versus risk. Cureus. 2023;15(1):e33939. PMID: 36819350. PMCID: PMC9937770. https://doi.org/10.7759/cureus.33939
4. Tereshchenko SN, Shestakova MV, Ageev FT, et al. Rationale for dapagliflozin administration for the prevention of adverse out-comes in patients with heart failure with reduced ejection fraction. Expert consensus statement. Russian Journal of Cardiology. 2020;25(5):3919. (In Russ.). https://doi.org/10.15829/1560-4071-2020-3919
5. Kobalava ZD, Lazarev PV, Villevalde SV. SGLT2 inhibitors: rationale and perspectives of use in heart failure. Kardiologiia. 2018;58(2):42–54. (In Russ.). PMID: 29466200. https://doi.org/10.18087/cardio.2018.2.10087
6. Faluk M, Wardhere A, Thakker R, Khan FA. SGLT2 inhibitors in heart failure with preserved ejection fraction. Curr Probl Cardiol. 2024;49(3):102388. PMID: 38184133. https://doi.org/10.1016/j.cpcardiol.2024.102388
7. Avagimyan A, Sheibani M, Pogosova N, et al. Possibilities of dapagliflozin-induced cardioprotection on doxorubicin + cyclophosphamide mode of chemotherapy-induced cardiomyopathy. Int J Cardiol. 2023;391:131331. PMID: 37666280. https://doi.org/10.1016/j.ijcard.2023.131331
8. Gajewska A, Wasiak J, Sapeda N, Młynarska E, Rysz J, Franczyk B. SGLT2 inhibitors in kidney diseases-a narrative review. Int J Mol Sci. 2024;25(9):4959. PMID: 38732178. PMCID: PMC11084583. https://doi.org/10.3390/ijms25094959
9. Rizzo MR, Di Meo I, Polito R, et al. Cognitive impairment and type 2 diabetes mellitus: focus of SGLT2 inhibitors treatment. Pharmacol Res. 2022;176:106062. PMID: 35017046. https://doi.org/10.1016/j.phrs.2022.106062
10. Sun M, Sun J, Sun W, et al. Unveiling the anticancer effects of SGLT-2i: mechanisms and therapeutic potential. Front Pharmacol. 2024;15:1369352. PMID: 38595915. PMCID: PMC11002155. https://doi.org/10.3389/fphar.2024.1369352
11. Zhou B, Shi Y, Fu R, et al. Relationship between SGLT-2i and ocular diseases in patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne). 2022;13:907340. PMID: 35692406. PMCID: PMC9178099. https://doi.org/10.3389/fendo.2022.907340
12. Boytsov SA, Pogosova NV, Ansheles AA, et al. Cardiovascular prevention 2022. Russian national guidelines. Russian Journal of Cardiology. 2023;28(5):5452. (In Russ.). https://doi.org/10.15829/1560-4071-2023-5452
13. Pogosova NV, Boytsov SA. Preventive cardiology 2024: state of problem perspectives of development. Kardiologiia. 2024;64(1):4–13. (In Russ.). PMID: 38323439. https://doi.org/10.18087/cardio.2024.1.n2636
14. Eghøj M, Zinckernagel L, Brinks T, et al. Adapting an evidence-based, home cardiac rehabilitation programme for people with heart failure and their caregivers to the Danish context: DK:REACH-HF study. Eur J Cardiovasc Nurs. Published online March 25, 2024. PMID: 38526240. https://doi.org/10.1093/eurjcn/zvae037
15. Bhanushali KB, Asnani HK, Nair A, Ganatra S, Dani SS. Pharmacovigilance study for SGLT 2 inhibitors – safety review of real-world data & randomized clinical trials. Curr Probl Cardiol. 2024;49(9):102664. PMID: 38789017. https://doi.org/10.1016/j.cpcardiol.2024.102664
16. Cunningham C, Jabri A, Alhuneafat L, Aneja A. A comprehensive guide to sodium glucose cotransport inhibitors. Curr Probl Cardiol. 2023;48(10):101817. PMID: 37211299. https://doi.org/10.1016/j.cpcardiol.2023.101817
17. He Z, Yang L, Nie Y, et al. Effects of SGLT-2 inhibitors on health-related quality of life and exercise capacity in heart failure patients with reduced ejection fraction: a systematic review and meta-analysis. Int J Cardiol. 2021;345:83–88. PMID: 34653575. https://doi.org/10.1016/j.ijcard.2021.10.008
18. Crisman E, Duarte P, Dauden E, et al. KEAP1-NRF2 protein-protein interaction inhibitors: design, pharmacological properties and therapeutic potential. Med Res Rev. 2023;43(1):237–287. PMID: 36086898. PMCID: PMC10087726. https://doi.org/10.1002/med.21925
19. Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med. 2015;88(Pt B):314–336. PMID: 26066302. PMCID: PMC4628850. https://doi.org/10.1016/j.freeradbiomed.2015.05.036
20. Cheng PP, Wang XT, Liu Q, et al. Nrf2 mediated signaling axis in heart failure: potential pharmacological receptor. Pharmacol Res. 2024;206:107268. PMID: 38908614. https://doi.org/10.1016/j.phrs.2024.107268
21. Lu MC, Ji JA, Jiang ZY, You QD. The Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: an update. Med Res Rev. 2016;36(5):924–963. PMID: 27192495. https://doi.org/10.1002/med.21396
22. Lu Y, An L, Taylor MRG, Chen QM. Nrf2 signaling in heart failure: expression of Nrf2, Keap1, antioxidant, and detoxification genes in dilated or ischemic cardiomyopathy. Physiol Genomics. 2022;54(3):115–127. https://doi.org/10.1152/physiolgenomics.00079.2021
23. Chen YY, Wu TT, Ho CY, et al. Blocking of SGLT2 to eliminate NADPH-induced oxidative stress in lenses of animals with fructose-induced diabetes mellitus. Int J Mol Sci. 2022;23(13):7142. PMID: 35806147. PMCID: PMC9266761. https://doi.org/10.3390/ijms23137142
24. Massagué J, Sheppard D. TGF-β signaling in health and disease. Cell. 2023;186(19):4007–4037. PMID: 37714133. PMCID: PMC10772989. https://doi.org/10.1016/j.cell.2023.07.036
25. Hata A, Chen YG. TGF-β signaling from receptors to smads. Cold Spring Harb Perspect Biol. 2016;8(9):a022061. PMID: 27449815. PMCID: PMC5008074. https://doi.org/10.1101/cshperspect.a022061
26. Fatehi Hassanabad A, Zarzycki A, Fedak PWM. Cellular and molecular mechanisms driving cardiac tissue fibrosis: on the precipice of personalized and precision medicine. Cardiovasc Pathol. 2024;71:107635. PMID: 38508436. https://doi.org/10.1016/j.carpath.2024.107635
27. Giordano C, Francone M, Cundari G, Pisano A, d’Amati G. Myocardial fibrosis: morphologic patterns and role of imaging in diagnosis and prognostication. Cardiovasc Pathol. 2022;56:107391. PMID: 34601072. https://doi.org/10.1016/j.carpath.2021.107391
28. Gager GM, von Lewinski D, Sourij H, et al. Effects of SGLT2 inhibitors on ion homeostasis and oxidative stress associated mechanisms in heart failure. Biomed Pharmacother. 2021;143:112169. PMID: 34560555. https://doi.org/10.1016/j.biopha.2021.112169
29. Kume S, Packer M. SGLT2 inhibitors act as metabolic transducers to restore healthy nutrient deprivation and surplus signaling in the kidney. Kidney Int. 2024;105(6):1172–1176. PMID: 38777403. https://doi.org/10.1016/j.kint.2024.01.044
30. Packer M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation. 2022;146(18):1383–1405. PMID: 36315602. PMCID: PMC9624240. https://doi.org/10.1161/CIRCULATIONAHA.122.061732
31. Stachteas P, Karakasis P, Patoulias D, Clemenza F, Fragakis N, Rizzo M. The effect of sodium-glucose co-transporter-2 inhibitors on markers of subclinical atherosclerosis. Ann Med. 2023;55(2):2304667. PMID: 38233735. PMCID: PMC10798275. https://doi.org/10.1080/07853890.2024.2304667
32. Gaspari T, Spizzo I, Liu H, et al. Dapagliflozin attenuates human vascular endothelial cell activation and induces vasorelaxation: a potential mechanism for inhibition of atherogenesis. Diab Vasc Dis Res. 2018;15(1):64–73. Published correction appears in Diab Vasc Dis Res. 2018;15(4):364. PMID: 28976221. https://doi.org/10.1177/1479164117733626
33. Wiviott SD, Raz I, Bonaca MP, et al; DECLARE–TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–357. PMID: 30415602. https://doi.org/10.1056/NEJMoa1812389
34. McMurray JJV, Solomon SD, Inzucchi SE, et al; DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. PMID: 31535829. https://doi.org/10.1056/NEJMoa1911303
35. Solomon SD, McMurray JJV, Claggett B, et al; DELIVER Trial Committees and Investigators. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2022;387(12):1089–1098. PMID: 36027570. https://doi.org/10.1056/NEJMoa2206286
36. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–1446. PMID: 32970396. https://doi.org/10.1056/NEJMoa2024816
37. Borlaug BA, Reddy YNV, Braun A, et al. Cardiac and metabolic effects of dapagliflozin in heart failure with preserved ejection fraction: the CAMEO-DAPA trial. Circulation. 2023;148(10):834–844. PMID: 37534453. PMCID: PMC10529848. https://doi.org/10.1161/CIRCULATIONAHA.123.065134
38. Nassif ME, Windsor SL, Borlaug BA, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat Med. 2021;27(11):1954–1960. PMID: 34711976. PMCID: PMC8604725. https://doi.org/10.1038/s41591-021-01536-x
39. Scholtes RA, Muskiet MHA, van Baar MJB, et al. Natriuretic effect of two weeks of dapagliflozin treatment in patients with type 2 diabetes and preserved kidney function during standardized sodium intake: results of the DAPASALT trial. Diabetes Care. 2021;44(2):440–447. PMID: 33318125. PMCID: PMC7818331. https://doi.org/10.2337/dc20-2604
40. Heerspink HJL, Oshima M, Zhang H, et al. Canagliflozin and kidney-related adverse events in type 2 diabetes and CKD: findings from the randomized CREDENCE trial. Am J Kidney Dis. 2022;79(2):244–256.e1. PMID: 34029680. https://doi.org/10.1053/j.ajkd.2021.05.005
41. Packer M, Anker SD, Butler J, et al. Effect of empagliflozin on the clinical stability of patients with heart failure and a reduced ejection fraction: the EMPEROR-Reduced trial. Circulation. 2021;143(4):326–336. Published correction appears in Circulation. 2021;143(4):e30. PMID: 33081531. PMCID: PMC7834905. https://doi.org/10.1161/CIRCULATIONAHA.120.051783
42. Packer M, Butler J, Zannad F, et al. Effect of empagliflozin on worsening heart failure events in patients with heart failure and preserved ejection fraction: EMPEROR-Preserved trial. Circulation. 2021;144(16):1284–1294. PMID: 34459213. PMCID: PMC8522627. https://doi.org/10.1161/CIRCULATIONAHA.121.056824
43. Bhatt DL, Szarek M, Steg PG, et al; SOLOIST-WHF Trial Investigators. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021;384(2):117–128. PMID: 33200892. https://doi.org/10.1056/NEJMoa2030183
44. Perkovic V, de Zeeuw D, Mahaffey KW, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6(9):691–704. PMID: 29937267. https://doi.org/10.1016/S2213-8587(18)30141-4
45. Zinman B, Wanner C, Lachin JM, et al; EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–2128. PMID: 26378978. https://doi.org/10.1056/NEJMoa1504720
46. Cannon CP, Pratley R, Dagogo-Jack S, et al; VERTIS CV Investigators. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383(15):1425–1435. PMID: 32966714. https://doi.org/10.1056/NEJMoa2004967
47. Bhatt DL, Szarek M, Pitt B, et al; SCORED Investigators. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021;384(2):129–139. PMID: 33200891. https://doi.org/10.1056/NEJMoa2030186
48. Mansouri MH, Mansouri P, Sadeghi M, et al. Antianginal effects of empagliflozin in patients with type 2 diabetes and refractory angina; a randomized, double-blind placebo-controlled trial (EMPT-ANGINA Trial). Clin Cardiol. 2024;47(1):e24158. PMID: 37721420. PMCID: PMC10766003. https://doi.org/10.1002/clc.24158
49. Xie L, Li S, Yu X, Wei Q, Yu F, Tong J. DAHOS study: efficacy of dapagliflozin in treating heart failure with reduced ejection fraction and obstructive sleep apnea syndrome - a 3-month, multicenter, randomized controlled clinical trial. Eur J Clin Pharmacol. 2024;80(5):771–780. PMID: 38386021. https://doi.org/10.1007/s00228-024-03643-3
50. James S, Erlinge D, Storey RF, et al. Dapagliflozin in myocardial infarction without diabetes or heart failure. NEJM Evid. 2024;3(2):EVIDoa2300286. PMID: 38320489. https://doi.org/10.1056/EVIDoa2300286
51. Giaccari A, Pontremoli R, Perrone Filardi P. SGLT-2 inhibitors for treatment of heart failure in patients with and without type 2 diabetes: a practical approach for routine clinical practice. Int J Cardiol. 2022;351:66–70. PMID: 34979145. https://doi.org/10.1016/j.ijcard.2021.12.050
52. Kurashin VK, Borovkova NYu, Kurashina VA, Bakka TE. Possibilities of cardio- and nephroprotective effects of drugs of the SGLT2 inhibitor group. Clinical Medicine (Russian Journal). 2021;99(3):172–176. (In Russ.). https://doi.org/10.30629/0023-2149-2021-99-3-172-176
53. Woo V, Connelly K, Lin P, McFarlane P. The role of sodium glucose cotransporter-2 (SGLT-2) inhibitors in heart failure and chronic kidney disease in type 2 diabetes. Curr Med Res Opin. 2019;35(7):1283–1295. PMID: 30767677. https://doi.org/10.1080/03007995.2019.1576479
54. Bülow RD, Boor P. Extracellular matrix in kidney fibrosis: more than just a scaffold. J Histochem Cytochem. 2019;67(9):643–661. PMID: 31116062. PMCID: PMC6713975. https://doi.org/10.1369/0022155419849388
55. Wang Y, Jin M, Cheng CK, Li Q. Tubular injury in diabetic kidney disease: molecular mechanisms and potential therapeutic perspectives. Front Endocrinol (Lausanne). 2023;14:1238927. PMID: 37600689. PMCID: PMC10433744. https://doi.org/10.3389/fendo.2023.1238927
56. Sarafidis P, Ortiz A, Ferro CJ, et al; ‘Hypertension and the Kidney’ working group of the European Society of Hypertension (ESH) and the ‘European Renal and Cardiovascular Medicine’ (EURECA-m) working group of the European Renal Association. Sodium--glucose co-transporter-2 inhibitors for patients with diabetic and nondiabetic chronic kidney disease: a new era has already begun. J Hypertens. 2021;39(6):1090–1097. PMID: 33443971. https://doi.org/10.1097/HJH.0000000000002776
57. Thomson SC, Vallon V. Renal effects of sodium-glucose co-transporter inhibitors. Am J Cardiol. 2019;124 Suppl 1(Suppl 1):S28–S35. PMID: 31741437. PMCID: PMC7258222. https://doi.org/10.1016/j.amjcard.2019.10.027
58. Skrabic R, Kumric M, Vrdoljak J, et al. SGLT2 inhibitors in chronic kidney disease: from mechanisms to clinical practice. Biomedicines. 2022;10(10):2458. PMID: 36289720. PMCID: PMC9598622. https://doi.org/10.3390/biomedicines10102458
59. Di Costanzo A, Esposito G, Indolfi C, Spaccarotella CAM. SGLT2 inhibitors: a new therapeutical strategy to improve clinical outcomes in patients with chronic kidney diseases. Int J Mol Sci. 2023;24(10):8732. PMID: 37240080. PMCID: PMC10218404. https://doi.org/10.3390/ijms24108732
60. Korbut AI, Klimontov VV. Empagliflozin: a new strategy for nephroprotection in diabetes. Diabetes Mellitus. 2017;20(1):75–84. (In Russ.). https://doi.org/10.14341/dm8005
61. Sukhareva OYu, Zuraeva ZT, Shamkhalova MSh. Gliflozins position update in the treatment algorithms for patients with type 2 diabetes mellitus and chronic kidney disease: new pathogenetic mechanisms and data from subanalyses of the large randomised control trails. Diabetes Mellitus. 2021;24(6):553–564. (In Russ.). https://doi.org/10.14341/dm12864
62. Mark PB, Sarafidis P, Ekart R, et al. SGLT2i for evidence-based cardiorenal protection in diabetic and non-diabetic chronic kidney disease: a comprehensive review by EURECA-m and ERBP working groups of ERA. Nephrol Dial Transplant. 2023;38(11):2444–2455. PMID: 37230946. PMCID: PMC10615631. https://doi.org/10.1093/ndt/gfad112
63. Gérard AO, Laurain A, Favre G, Drici MD, Esnault VLM. Activation of the tubulo-glomerular feedback by SGLT2 inhibitors in patients with type 2 diabetes and advanced chronic kidney disease: toward the end of a myth?. Diabetes Care. 2022;45(10):e148–e149. PMID: 35973076. PMCID: PMC9862288. https://doi.org/10.2337/dc22-0921
64. Kim NH, Kim NH. Renoprotective mechanism of sodium-glucose cotransporter 2 inhibitors: focusing on renal hemodynamics. Diabetes Metab J. 2022;46(4):543–551. PMID: 35929172. PMCID: PMC9353563. https://doi.org/10.4093/dmj.2022.0209
65. Wang Q, Yu J, Deng W, et alInfluence of sodium/glucose cotransporter-2 inhibitors on the incidence of acute kidney injury: a meta-analysis. Front Pharmacol. 2024;15:1372421. PMID: 38983922. PMCID: PMC11231204. https://doi.org/10.3389/fphar.2024.1372421
66. Nespoux J, Vallon V. Renal effects of SGLT2 inhibitors: an update. Curr Opin Nephrol Hypertens. 2020;29(2):190–198. PMID: 31815757. PMCID: PMC7224333. https://doi.org/10.1097/MNH.0000000000000584
67. Cleveland KH, Schnellmann RG. Pharmacological targeting of mitochondria in diabetic kidney disease. Pharmacol Rev. 2023;75(2):250–262. PMID: 36781216. https://doi.org/10.1124/pharmrev.122.000560
68. Mulder S, Heerspink HJL, Darshi M, et al. Effects of dapagliflozin on urinary metabolites in people with type 2 diabetes. Diabetes Obes Metab. 2019;21(11):2422–2428. PMID: 31264758. https://doi.org/10.1111/dom.13823
69. Lee YH, Kim SH, Kang JM, et al. Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy. Am J Physiol Renal Physiol. 2019;317(4):F767–F780. PMID: 31390268. https://doi.org/10.1152/ajprenal.00565.2018
70. Chun Y, Kim J. AMPK-mTOR signaling and cellular adaptations in hypoxia. Int J Mol Sci. 2021;22(18):9765. PMID: 34575924. PMCID: PMC8465282. https://doi.org/10.3390/ijms22189765
71. Podestà MA, Sabiu G, Galassi A, Ciceri P, Cozzolino M. SGLT2 inhibitors in diabetic and non-diabetic chronic kidney disease. Biomedicines. 2023;11(2):279. PMID: 36830815. PMCID: PMC9953060. https://doi.org/10.3390/biomedicines11020279
72. Fernandez-Fernandez B, Sarafidis P, Kanbay M, et al. SGLT2 inhibitors for non-diabetic kidney disease: drugs to treat CKD that also improve glycaemia. Clin Kidney J. 2020;13(5):728–733. PMID: 33123352. PMCID: PMC7577767. https://doi.org/10.1093/ckj/sfaa198
73. Neal B, Perkovic V, Mahaffey KW, et al; CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–657. PMID: 28605608. https://doi.org/10.1056/NEJMoa1611925
74. Packer M, Anker SD, Butler J, et al; EMPEROR-Reduced Trial Investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–1424. PMID: 32865377. https://doi.org/10.1056/NEJMoa2022190
75. Chang YK, Choi H, Jeong JY, et al. Dapagliflozin, SGLT2 inhibitor, attenuates renal ischemia-reperfusion injury. PLoS One. 2016;11(7):e0158810. Published correction appears in PLoS One. 2016;11(7):e0160478. PMID: 27391020. PMCID: PMC4938401. https://doi.org/10.1371/journal.pone.0158810
76. Zhang Y, Nakano D, Guan Y, et al. A sodium-glucose cotransporter 2 inhibitor attenuates renal capillary injury and fibrosis by a vascular endothelial growth factor-dependent pathway after renal injury in mice. Kidney Int. 2018;94(3):524–535. PMID: 30045814. https://doi.org/10.1016/j.kint.2018.05.002
Review
For citations:
Avagimyan A.A., Sheibani M., Trofimenko A.I., Lysov E.E., Khamidova F.M., Aznauryan A.Z., Sukiasyan L.M., Sahakyan K.T., Gevorgyan T.R., Tatoyan M.R., Mkrtchyan G.L., Meltonyan G.L., Petrosyan A.R., Martemyanova L.A., Petrosyan R.R., Urazova O.I., Pogosova N.V., Sarrafzadegan N. Protective Potential of Sodium-Glucose Cotransporter 2 Inhibitors in Internal Medicine (Part 1). Innovative Medicine of Kuban. 2024;(4):126-135. https://doi.org/10.35401/2541-9897-2024-9-4-126-135